 
        
        - •Федеральное агентство по образованию Российской Федерации
- •Глава 1. Анализ временных рядов
- •1.1 Идентификация модели временных рядов
- •1.1.1 Систематическая составляющая и случайный шум
- •1.1.2 Два общих типа компонент временных рядов
- •1.1.3 Анализ тренда
- •1.1.4 Анализ сезонности
- •1.2 Arima-модели
- •1.2.1 Два основных процесса
- •1.2.2 Модель arima
- •1.2.3 Идентификация
- •1.2.4 Оценивание параметров
- •1.2.5 Оценивание модели
- •1.3 Экспоненциальное сглаживание
- •1.3.1 Простое экспоненциальное сглаживание
- •1.3.2 Выбор лучшего значения параметра a (альфа)
- •1.3.3 Индексы качества подгонки
- •1.3.4 Сезонная и несезонная модели с трендом или без тренда
- •1.4 Сезонная декомпозиция
- •1.5 Анализ распределенных лагов
- •1.5.1 Общая цель
- •1.5.2 Общая модель
- •1.5.3 Распределенный лаг Алмона
- •1.6 Одномерный анализ Фурье
- •1.7 Подготовка данных к анализу
- •Глава 2. Прогнозирование объемов покупки и продажи евро
- •2.1 Прогнозирование объема покупки евро
- •2.1.1 Конечно-разностное дифференцирование
- •2.1.2 Двухпараметрическая модель Хольта
- •2.1.3 Аддитивная модель сезонных явлений с линейным ростом (модель Тейла, Вейджа)
- •2.1.4 Мультипликативная модель сезонных явлений с линейным ростом (модель Хольта-Уинтерса)
- •2.1.5 Arima-модели
- •2.1.6 Итоги прогнозирования
- •2.2 Прогнозирование объема продаж евро
- •2.2.1 Конечно-разностное дифференцирование
- •2.2.2 Двухпараметрическая модель Хольта
- •2.2.3 Аддитивная модель сезонных явлений с линейным ростом (модель Тейла, Вейджа)
- •2.2.4 Мультипликативная модель сезонных явлений с линейным ростом (модель Хольта-Уинтерса)
- •2.2.5 Arima-модели
- •2.2.6 Итоги прогнозирования
- •2.3 Итоги прогнозирования и выводы
- •Заключение
1.2.3 Идентификация
Число оцениваемых параметров. Конечно, до того, как начать оценивание, вам необходимо решить, какой тип модели будет подбираться к данным, и какое количество параметров присутствует в модели, иными словами, нужно идентифицировать модель ARIMA. Основными инструментами идентификации порядка модели являются графики, автокорреляционная функция (АКФ), частная автокорреляционная функция (ЧАКФ). Это решение не является простым и требуется основательно поэкспериментировать с альтернативными моделями. Тем не менее, большинство встречающихся на практике временных рядов можно с достаточной степенью точности аппроксимировать одной из 5 основных моделей, которые можно идентифицировать по виду автокорреляционной (АКФ) и частной автокорреляционной функции (ЧАКФ). Ниже дается список этих моделей, основанный на рекомендациях Pankratz (1983); дополнительные практические советы даны в Hoff (1983), McCleary and Hay (1980), McDowall, McCleary, Meidinger, and Hay (1980), and Vandaele (1983). Отметим, что число параметров каждого вида невелико (меньше 2), поэтому нетрудно проверить альтернативные модели.
- Один параметр (p): АКФ - экспоненциально убывает; ЧАКФ - имеет резко выделяющееся значение для лага 1, нет корреляций на других лагах. 
- Два параметра авторегрессии (p): АКФ имеет форму синусоиды или экспоненциально убывает; ЧАКФ имеет резко выделяющиеся значения на лагах 1, 2, нет корреляций на других лагах. 
- Один параметр скользящего среднего (q): АКФ имеет резко выделяющееся значение на лаге 1, нет корреляций на других лагах. ЧАКФ экспоненциально убывает. 
- Два параметра скользящего среднего (q): АКФ имеет резко выделяющиеся значения на лагах 1, 2, нет корреляций на других лагах. ЧАКФ имеет форму синусоиды или экспоненциально убывает. 
- Один параметр авторегрессии (p) и один параметр скользящего среднего (q): АКФ экспоненциально убывает с лага 1; ЧАКФ - экспоненциально убывает с лага 1. 
Сезонные модели. Мультипликативная сезонная ARIMA представляет естественное развитие и обобщение обычной модели ARIMA на ряды, в которых имеется периодическая сезонная компонента. В дополнении к несезонным параметрам, в модель вводятся сезонные параметры для определенного лага (устанавливаемого на этапе идентификации порядка модели). Аналогично параметрам простой модели ARIMA, эти параметры называются: сезонная авторегрессия (ps), сезонная разность (ds) и сезонное скользящее среднее (qs). Таким образом, полная сезонная ARIMA может быть записана как АРПСС (p,d,q)(ps,ds,qs). Например, модель (0,1,2)(0,1,1) включает 0 регулярных параметров авторегрессии, 2 регулярных параметра скользящего среднего и 1 параметр сезонного скользящего среднего. Эти параметры вычисляются для рядов, получаемых после взятия одной разности с лагом 1 и далее сезонной разности. Сезонный лаг, используемый для сезонных параметров, определяется на этапе идентификации порядка модели.
Общие рекомендации относительно выбора обычных параметров (с помощью АКФ и ЧАКФ) полностью применимы к сезонным моделям. Основное отличие состоит в том, что в сезонных рядах АКФ и ЧАКФ имеют существенные значения на лагах, кратных сезонному лагу (в дополнении к характерному поведению этих функций, описывающих регулярную (несезонную) компоненту ARIMA).
