Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2012 УМК_МАТЕМАТИКА (заочное - 1год).doc
Скачиваний:
18
Добавлен:
17.11.2019
Размер:
4.07 Mб
Скачать

Тема 7. Числовые последовательности и ряды. Предел последовательности. Предел функции и непрерывность.

Если каждому натуральному числу по некоторому правилу поставлено в соответствие одно вполне определённое действительное число , то говорят, что задана числовая последовательность . Кратко обозначают . Число называется общим членом последовательности. Последовательность называют также функцией натурального аргумента. Последовательность всегда содержит бесконечно много элементов, среди которых могут быть равные.

Число называется пределом последовательности , и пишут , если для любого числа найдётся номер такой, что при всех выполняется неравенство .

Последовательность , имеющая конечный предел, называется сходящейся, в противном случае – расходящейся.

Последовательность называется: 1) убывающей, если ; 2) возрастающей, если ; 3) неубывающей, если ; 4) невозрастающей, если . Все вышеперечисленные последовательности называются монотонными.

Последовательность называется ограниченной, если существует число такое, что для всех выполняется условие: . В противном случае последовательность - неограниченная.

Всякая монотонная ограниченная последовательность имеет предел (теорема Вейерштрасса).

Последовательность называется бесконечно малой, если . Последовательность называется бесконечно большой (сходящейся к бесконечности), если .

Числом называется предел последовательности , где

Постоянную называют неперовым числом. Логарифм числа по основанию называется натуральным логарифмом числа и обозначается .

Выражение вида , где - последовательность чисел, называется числовым рядом и обозначатся . Сумма первых членов ряда называется -ой частичной суммой ряда.

Ряд называется сходящимся, если существует конечный предел и расходящимся, если предел не существует. Число называется суммой сходящегося ряда, при этом пишут .

Если ряд сходится, то (необходимый признак сходимости ряда). Обратное утверждение неверно.

Если , то ряд расходится (достаточный признак расходимости ряда).

Обобщённым гармоническим рядом называют ряд , который сходится при и расходится при .

Геометрическим рядом называют ряд , который сходится при , при этом его сумма равна и расходится при .

Число называется пределом функции при (или в точке ), и пишут , если для любого числа найдётся число такое, что при всех , удовлетворяющих условию , выполняется неравенство .

Число называется пределом функции при , и пишут , если для любого числа найдётся число такое, что при всех , удовлетворяющих условию , выполняется неравенство .

Рассматривают также односторонние пределы функций: ,

, , , где стремится к , , или только с левой стороны или только с правой стороны.

Основные утверждения, используемые для вычисления пределов функций при (в дальнейшем - или число или символ ):

1) Если - постоянная величина, то .

2) Если существуют конечные пределы , , то:

а) ; б) ;

в) ; г) , если .

При вычислении пределов постоянно пользуются и тем, что для любой основной элементарной функции и точки из её области определения справедливо соотношение .

Функция называется бесконечно большой при , если . Функция называется бесконечно малой при , если .

Основные утверждения для бесконечно больших функций, используемые для вычисления пределов при :

1) Если , то ,если , то

2) Если и , то .

3) Если и , то .

4) Если и , то .

5) Если и , то .

6) Если и , то .

Если непосредственное применение свойств конечных пределов и бесконечно больших функций приводит к неопределённым выражениям, символически обозначаемым: , то для вычисления предела – «раскрытия неопределённости» - преобразовывают выражение так, чтобы получить возможность его вычислить.

Первым замечательным пределом называется предел: . Его следствиями являются пределы: , ,

Вторым замечательным пределом называются пределы:

,

где -основание натуральных логарифмов (число Непера). Он используется для вычисления предела степенно-показательной функции , где и .

Если функция определена всюду в некоторой окрестности точки (левой полуокрестности, правой полуокрестности) и ( , ), то функция называется непрерывной в точке (непрерывной слева, непрерывной справа).

Каждая основная элементарная функция непрерывна в каждой внутренней точке своей области определения.

Если в точке , то называется точкой разрыва функции . При этом различают следующие случаи:

1) Если , то называется точкой устранимого разрыва функции .

2) Если в точке функция имеет конечные односторонние пределы и , но они не равны друг другу, то называется точкой разрыва 1-ого рода.

3) В остальных случаях называется точкой разрыва 2-ого рода .

Функция называется непрерывной на отрезке , если она непрерывна в каждой его точке (в точке - непрерывна справа, в точке - непрерывна слева). Функция непрерывная на отрезке обладает свойствами: 1) ограничена на ; 2) достигает на отрезке своего наименьшего значения и наибольшего значения .

Прямая называется асимптотой графика функции , если расстояние от точки до прямой стремится к нулю при бесконечном удалении точки от начала координат.

Прямая называется вертикальной асимптотой графика функции , если хотя бы один из односторонних пределов или равен бесконечности.

Прямая является вертикальной асимптотой, тогда и только тогда, когда является точкой бесконечного разрыва функции . Непрерывные функции не имеют вертикальных асимптот.

Прямая называется наклонной асимптотой графика функции при (при ), если (соответственно, ). Частным случаем наклонной асимптоты (при ) является горизонтальная асимптота.

Прямая является наклонной асимптотой графика функции при (при ) тогда и только тогда, когда одновременно существуют пределы: и (соответственно, и ).