Скачиваний:
93
Добавлен:
02.05.2014
Размер:
1.17 Mб
Скачать

9.4. Теория Демпстера—Шейфера Обобщение байесовских выводов

Суть байесовского подхода к выводам состоит в том, что, начиная с глобального распределения вероятностей для всех релевантных переменных, наблюдая значение некоторых из этих переменных, определяют ус­ловные распределения оставшихся переменных при данных наблюдений. Термин «байесовский» обычно означает наличие глобального закона рас­пределения, представленного в виде двух составляющих, первая — марги­нальное распределение множества параметров и вторая — семейство ус­ловных распределений множества наблюдаемых переменных при данных потенциальных множествах значений параметров. Первая часть — априор­ное распределение — суммирует множество уверенностей или состояний знания, имеющихся в наличии до того как выполнены какие-либо наблю­дения. Вторая часть — функция правдоподобия — характеризует инфор­мацию, которую несут наблюдения. Выводы могут быть выражены как ве­роятности событий, определенные неизвестными значениями, обычно не­известными значениями параметров, но иногда наблюдениями, значения которых пока не получены.

В то время как знания, несомненно, могут быть персональными, пере­дача знаний является наиболее фундаментальной чертой поведения чело­века. Статистические выводы можно рассматривать как науку, формули­ровки которой позволяют сообщить частичные знания в форме вероятно­стей.

Метод обобщенных байесовских выводов, предложенный Артуром Демпстером в 60-х годах и развитый Гленом Шейфером в 70-х годах не требует наличия глобального закона распределения вероятностей. Новые процедуры вывода обычно не дают точных знаний вероятностей, но только границы для таких вероятностей. Мотивацией разработки теории послужило то обстоя­тельство, что возникли трудности с байесовским подходом как в случае не­знания, так и в случае субъективных вероятностей, приписываемых событию и его отрицанию. Традиционные вероятностные методы ставят в соответст­вие отсутствию знания равновероятность событий. Однако такое предполо­жение содержит больше информации, чем в действительности ее имеется. Как в случае полного незнания, так и в случае равных вероятностей мы при писываем событиям одни и те же значения. Другое оспариваемое утвержде­ние — закон исключенного третьего:

Шейфер заметил, что во многих случаях свидетельство, только частично подтверждающие гипотезу, не обязательно частично подтверждают ее отрицание.

База знаний ИИС иногда состоит из нечетких понятий, состояний, кото­рые недостаточно хорошо определены, и качественное описание перемен­ных, в которой не имеет четких границ.

Основным понятием теории Демпстера-Шейфера (DST) является пространство (фрейм) исходов Э, обозначающее исчерпывающее множество взаимно исключающих событий и базовое приписывание вероятностей (бпв) всем подмножествам пространства исходов Θ. Различие в трактовке незна­ния между обычной формой теории вероятностей и DST заключается в сле­дующем. В то время как в теории вероятностей нет различия между незна­нием и равномерным распределением вероятностей по множеству гипотез, в DST m({A}) = m({В}) = 1/2, что указывает, что вера в А и В одинакова и нет никакого незнания относительно их появления. В теории вероятностей веро­ятность отрицания гипотезы А фиксируется, если известна вероятность ги­потезы А, т.к. А  A = Ωи

В DST вера в отрицание гипотезы не зависит от веры в саму гипотезу, ограничение более слабое, и оно записывается в виде

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке Романов В.П. Интеллектуальные информационные системы в экономике