
- •Вариант 1
- •Вариант 2
- •Вычислить приближенно .
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 3
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 4
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 5
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 6
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 7
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 8
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 9
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 10
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 11
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 12
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 13
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 14
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 15
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 16.
- •Вычислить приближенно .
- •8. Исследовать на экстремум функции двух переменных.
- •9. Найти условные экстремумы функции при заданных условиях связи.
- •10. Для предложенных данных:
- •Вариант 17.
- •8. Исследовать на экстремум функции двух переменных.
- •9. Найти условные экстремумы функции при заданных условиях связи.
- •10. Для предложенных данных:
- •Вариант 18.
- •Вычислить приближенно .
- •8. Исследовать на экстремум функции двух переменных.
- •9. Найти условные экстремумы функции при заданных условиях связи.
- •10. Для предложенных данных:
- •Вариант 19.
- •Вычислить приближенно .
- •8. Исследовать на экстремум функции двух переменных.
- •9. Найти условные экстремумы функции при заданных условиях связи.
- •10. Для предложенных данных:
- •Вариант 20.
- •Вычислить приближенно .
- •8. Исследовать на экстремум функции двух переменных.
- •9. Найти условные экстремумы функции при заданных условиях связи.
- •10. Для предложенных данных:
- •Вариант 21.
- •Вычислить приближенно .
- •8. Исследовать на экстремум функции двух переменных.
- •9. Найти условные экстремумы функции при заданных условиях связи.
- •10. Для предложенных данных:
8. Исследовать на экстремум функции двух переменных.
z = x3 – y3 – 3x + 12y.
9. Найти условные экстремумы функции при заданных условиях связи.
а) u = x2 + y2 – 12x + 16y; x2 + y2 = 25;
б) u = x2 + y2 + 2z2; x – y + z = 1.
10. Для предложенных данных:
Построить точки на координатной плоскости.
Определить вид линейной зависимости с помощью составления и решения соответствующей системы нормальных уравнений и с помощью формул, которые определяют коэффициенты через средние значения.
Определить вид квадратичной зависимости.
Построить найденные линии на координатной плоскости.
хi |
3,2 |
4,1 |
5,3 |
6,7 |
7,3 |
yi |
1,6 |
1,4 |
1,1 |
0,9 |
0,7 |
Вариант 21.
Найти область определения функции z =
.
Найти предел функции .
Найти и
а) z
= arctg
;
б) z2
= xy.
Вычислить приближенно .
Показать, что функция z =
удовлетворяет уравнению
.
Найти наибольшее и наименьшее значения функции z = xy(4 – x – y) в треугольнике, ограниченном прямыми x = 1, y = 0, x + y = 6.
Для заданной поверхности z = z(x,y) найти в точке М:
а) уравнение линии уровня функции z(x,y);
б) производную z(x,y) по направлению, заданному вектором или углом с осью Оx;
в) направление наибольшего возрастания z и производную по этому направлению;
г) уравнения касательной плоскости и нормали.
z = x2 – y2; M(5; 4); =(1; 0).
8. Исследовать на экстремум функции двух переменных.
z = 2xy2 – 2x3 + 2y2 + 24x.
9. Найти условные экстремумы функции при заданных условиях связи.
а) u = x2 + xy + y2; x + y = 2;
б) u = x3 + y2 – z3 + 5; x + y - z = 0.
10. Для предложенных данных:
Построить точки на координатной плоскости.
Определить вид линейной зависимости с помощью составления и решения соответствующей системы нормальных уравнений и с помощью формул, которые определяют коэффициенты через средние значения.
Определить вид квадратичной зависимости.
Построить найденные линии на координатной плоскости.
хi |
1,1 |
1,3 |
1,7 |
1,9 |
2,2 |
yi |
1,3 |
1,4 |
1,5 |
1,6 |
1,7 |