
- •Вариант 1
- •Вариант 2
- •Вычислить приближенно .
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 3
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 4
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 5
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 6
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 7
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 8
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 9
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 10
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 11
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 12
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 13
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 14
- •Вычислить приближенно .
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 15
- •6. Исследовать на экстремум функции двух переменных.
- •7. Найти условные экстремумы функции при заданных условиях связи.
- •8. Для предложенных данных:
- •Вариант 16.
- •Вычислить приближенно .
- •8. Исследовать на экстремум функции двух переменных.
- •9. Найти условные экстремумы функции при заданных условиях связи.
- •10. Для предложенных данных:
- •Вариант 17.
- •8. Исследовать на экстремум функции двух переменных.
- •9. Найти условные экстремумы функции при заданных условиях связи.
- •10. Для предложенных данных:
- •Вариант 18.
- •Вычислить приближенно .
- •8. Исследовать на экстремум функции двух переменных.
- •9. Найти условные экстремумы функции при заданных условиях связи.
- •10. Для предложенных данных:
- •Вариант 19.
- •Вычислить приближенно .
- •8. Исследовать на экстремум функции двух переменных.
- •9. Найти условные экстремумы функции при заданных условиях связи.
- •10. Для предложенных данных:
- •Вариант 20.
- •Вычислить приближенно .
- •8. Исследовать на экстремум функции двух переменных.
- •9. Найти условные экстремумы функции при заданных условиях связи.
- •10. Для предложенных данных:
- •Вариант 21.
- •Вычислить приближенно .
- •8. Исследовать на экстремум функции двух переменных.
- •9. Найти условные экстремумы функции при заданных условиях связи.
- •10. Для предложенных данных:
Вариант 16.
Найти область определения функции z = ln
.
Найти предел функции
.
Найти
и
а) z
=
;
б) ln(xy
+ z)
+ zxy
= 1.
Вычислить приближенно .
Показать, что функция z = arctg(2x - y) удовлетворяет уравнению
.
Найти наибольшее и наименьшее значения функции z = x2y в области x2 + y2 ≤ 1.
Для заданной поверхности z = z(x,y) найти в точке М:
а) уравнение линии уровня функции z(x,y);
б) производную z(x,y) по направлению, заданному вектором или углом с осью Оx;
в) направление наибольшего возрастания z и производную по этому направлению;
г) уравнения касательной плоскости и нормали.
z = ln ; M(0; 1); =(1; 1).
8. Исследовать на экстремум функции двух переменных.
z = 2x + x2 + y2 - y + 3.
9. Найти условные экстремумы функции при заданных условиях связи.
а) u
=
;
,
x
≥ 0, y
≥ 0;
б) u = xyz; xy + yz + xz = 8, x + y + z = 5.
10. Для предложенных данных:
Построить точки на координатной плоскости.
Определить вид линейной зависимости с помощью составления и решения соответствующей системы нормальных уравнений и с помощью формул, которые определяют коэффициенты через средние значения.
Определить вид квадратичной зависимости.
Построить найденные линии на координатной плоскости.
хi |
2,1 |
2,3 |
3,1 |
3,8 |
4,5 |
yi |
-9,3 |
-7,2 |
-13,4 |
-16,1 |
-18,9 |
Вариант 17.
Найти область определения функции z =
.
Найти предел функции
.
Найти и
а) z
= ln
sin
;
б) exy
+ exz
+ eyz
= 0.
Вычислить приближенно arctg .
Показать, что функция z = x ·
удовлетворяет уравнению
.
Найти наибольшее и наименьшее значения функции z = x2 + 2xy – 4x + 8y в прямоугольнике x = 0, y = 0, x = -1, y = 2.
Для заданной поверхности z = z(x,y) найти в точке М:
а) уравнение линии уровня функции z(x,y);
б) производную z(x,y) по направлению, заданному вектором или углом с осью Оx;
в) направление наибольшего возрастания z и производную по этому направлению;
г) уравнения касательной плоскости и нормали.
z = 2x2 - 4y2; M(-2; 1); =(1; -3).
8. Исследовать на экстремум функции двух переменных.
z = x3 + 2xy - y2 + 2x2 – 7x + 2y - 3.
9. Найти условные экстремумы функции при заданных условиях связи.
а) u = x2 + y2; 3x + 2y – 6 = 0;
б)
u =
+ y2
+ z2;
x2
+ y2
+ z2
= 1, x + 2y + 3z = 0.
10. Для предложенных данных:
Построить точки на координатной плоскости.
Определить вид линейной зависимости с помощью составления и решения соответствующей системы нормальных уравнений и с помощью формул, которые определяют коэффициенты через средние значения.
Определить вид квадратичной зависимости.
Построить найденные линии на координатной плоскости.
хi |
1,1 |
2,1 |
3,4 |
4,3 |
4,9 |
yi |
-0,8 |
1,2 |
3,8 |
5,4 |
6,7 |
Вариант 18.
Найти область определения функции z = arcsin
.
Найти предел функции
.
Найти и
а) z = · lny; б) x2 + y2 – z2 - xy = 0.