
- •Кафедра информатики и прикладной математики математика
- •Часть 2
- •Теория вероятностей и элементы математической статистики учебно - методический комплекс
- •Санкт-Петербург
- •Информация о дисциплине
- •1.1. Предисловие
- •Содержание дисциплины и виды учебной работы Объем дисциплины и виды учебной работы
- •Перечень видов практических занятий и контроля:
- •2. Рабочие учебные материалы
- •2.1. Рабочая программа (объем 150 часов) Введение
- •Раздел 1. Случайные события (50 часов)
- •Раздел 2. Случайные величины ( 60 часов)
- •Раздел 3. Элементы математической статистики (40 часов)
- •2.2. Тематический план занятий Тематический план дисциплины
- •Тематический план дисциплины для студентов очно-заочной формы обучения
- •Тематический план дисциплины для студентов заочной формы обучения
- •2.3. Структурно-логическая схема дисциплины Математика ч.2. Теория вероятностей и элементы математической статистики Теория
- •Раздел 1 Случайные события Раздел 3 Элементы математической Статистики
- •Раздел 2 Случайные величины
- •2.4. Временной график изучения дисциплины
- •2.5. Практический блок Практические занятия (очно-заочная форма обучения)
- •Практические занятия (заочная формы обучения)
- •Практические занятия (очная форма обучения)
- •Лабораторные работы (очно-заочная форма обучения)
- •Лабораторные работы (очная форма обучения)
- •Лабораторные работы (заочная форма обучения)
- •2.6. Бально-рейтинговая система
- •Информационные ресурсы дисциплины
- •Библиографический список Основной:
- •3.2. Опорный конспект по курсу “ Математика ч.2. Теория вероятностей и элементы математической статистики” введение
- •Раздел 1. Случайные события
- •1.1. Понятие случайного события
- •1.1.1. Сведения из теории множеств
- •1.1.2. Пространство элементарных событий
- •1.1.3. Классификация событий
- •1.1.4. Сумма и произведение событий
- •1.2. Вероятности случайных событий.
- •1.2.1. Относительная частота события, аксиомы теории вероятностей. Классическое определение вероятности
- •1.2.2. Геометрическое определение вероятности
- •Вычисление вероятности события через элементы комбинаторного анализа
- •1.2.4. Свойства вероятностей событий
- •1.2.5. Независимые события
- •1.2.6. Расчет вероятности безотказной работы прибора
- •Формулы для вычисления вероятности событий
- •1.3.1. Последовательность независимых испытаний (схема Бернулли)
- •1.3.2. Условная вероятность события
- •Вероятность произведения событий
- •1.3.4. Формула полной вероятности и формула Байеса
- •Раздел 2. Случайные величины
- •2.1. Описание случайных величин
- •2.1.1. Определение и способы задания случайной величины Одним из основных понятий теории вероятности является понятие случайной величины. Рассмотрим некоторые примеры случайных величин:
- •2.1.2. Дискретные случайные величины
- •Рассмотрим события Ai , содержащие все элементарные события , приводящие к значению XI:
- •Пусть pi обозначает вероятность события Ai :
- •2.1.3. Непрерывные случайные величины
- •2.1.4. Функция распределения и ее свойства
- •2.1.5. Плотность распределения вероятности и ее свойства
- •2.2. Числовые характеристики случайных величин
- •2.2.1. Математическое ожидание случайной величины
- •2.2.2. Дисперсия случайной величины
- •2.2.3. Нормальное распределение случайной величины
- •2.2.4. Биномиальное распределение
- •2.2.5. Распределение Пуассона
- •Раздел 3. Элементы математической статистики
- •3.1. Основные определения
- •Систематизация выборки
- •Гистограмма
- •3.3. Точечные оценки параметров распределения
- •Основные понятия
- •Точечные оценки математического ожидания и дисперсии
- •3.4. Интервальные- оценки
- •Понятие интервальной оценки
- •Построение интервальных оценок
- •Основные статистические распределения
- •Интервальные оценки математического ожидания нормального распределения
- •Интервальная оценка дисперсии нормального распределения
- •4. Методические указания к выполнению лабораторных работ
- •Выполнение лабораторных работ в ms Excel
- •Лабораторная работа 1 статистическое оценивание параметров распределения
- •Порядок выполнения лабораторной работы
- •Лабораторная работа 2 проверка гипотезы о законе распределения. Критерий пирсона
- •Понятие статистической гипотезы о виде распределения
- •Порядок выполнения лабораторной работы
- •Ячейка Значение Ячейка Значение
- •5. Методические указания к выполнению контрольной работы Задание на контрольную работу
- •Методические указания к выполнению контрольной работы События и их вероятности
- •Случайные величины
- •Среднее квадратическое отклонение
- •Элементы математической статистики
- •6. Блок контроля освоения дисциплины Репетиционные вопросы Тест № 1
- •Вопрос 10
- •Вопрос 14
- •Вопрос 15
- •Вопрос 16
- •Вопрос 17
- •Вопрос 18
- •Вопрос 19
- •Вопрос 20
- •Тест № 2
- •Вопрос 1
- •Вопрос 7
- •Вопросы для экзамена по курсу «Теория вероятностей и элементы математической статистики»
- •Глоссарий
- •Продолжение таблицы в
- •Окончание таблицы в
- •Равномерно распределенные случайные числа
- •Содержание
- •Раздел 1. Случайные события………………………………………. 18
- •Раздел 2 . Случайные величины ..………………………… ….. 42
- •Раздел 3. Элементы математической статистики ............... 65
- •4. Методические указания к выполнению лабораторных
- •5. Методические указания к выполнению контрольной
Основные понятия
Пусть наблюдается
случайная величина ξ
с функцией распределения
и плотностью распределения
.
Случайная выборка представлена вектором
с реализацией
.
(3.7)
Параметром
распределения
случайной величины
называется любая числовая характеристика
этой случайной величины (математическое
ожидание, дисперсия и т.п.) или любая
константа, явно входящая в выражение
для функции или плотности распределения.
Если параметр неизвестен, то его точечной оценкой называется произвольная функция элементов выборки
.
(3.8) Реализацию оценки, т.е. значение
оценки для наблюдавшейся в эксперименте
реализации выборки, принимают за
приближенное значение неизвестного
параметра
Из соотношения
(3.8) видно, что
как функция случайных величин сама
также является случайной величиной.
Закон распределения
оценки
зависит от вида функции
,
числа наблюдений и значения оцениваемого
параметра.
Ясно, что существует
много разных способов построения
точечной оценки, и не всякая зависимость
может давать удовлетворительную оценку
неизвестного параметра
.
Рассмотрим некоторые свойства, которыми
должна обладать оценка, чтобы ее
можно было считать хорошим приближением
к неизвестному параметру.
Оценка
параметра
называется несмещенной, если
ее математическое ожидание равно
оцениваемому параметру, то есть
.
(3.9)
Если свойство (2.2) не выполняется, то есть
,
(3.10)
то оценку
называют смещенной, при этом
величину
называют систематической ошибкой оценки
.
Требование несмещенности означает, что выборочные значения оценок, полученных в результате повторения выборок, группируются около оцениваемого параметра.
Оценка параметра называется состоятельной, если при она сходится по вероятности к оцениваемому параметру , т.е. для любого ε > 0 выполняется равенство
.
(3.11)
Следующая теорема устанавливает достаточные условия состоятельности оценки параметра .
Теорема. Если
при
и
,
то оценка
параметра
является состоятельной.
Состоятельность оценки означает, что, при достаточно большом объеме выборки с вероятностью близкой к единице, отклонение оценки от истинного значения параметра меньше ранее заданной величины.
Обычно в качестве
меры точности оценки
используется среднеквадратическая
ошибка (среднее значение квадрата
ошибки)
.
Очевидно, чем меньше эта ошибка, тем
теснее сгруппированы значения оценки
около оцениваемого параметра. Поэтому
всегда желательно, чтобы ошибка оценки
была по возможности малой. Используя
свойства математического ожидания,
нетрудно получить
.
(3.12)
Для несмещенных оценок
,
(3.13)
то есть их мерой точности является дисперсия.
Несмещенная оценка
параметра
называется его эффективной оценкой,
если ее дисперсия
является наименьшей среди дисперсий
всех возможных оценок параметра
,
вычисленных по одному и тому же объему
выборки.