Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МЕТОДИЧКА_числен_мет.DOC
Скачиваний:
47
Добавлен:
11.11.2019
Размер:
1.97 Mб
Скачать

Тема 3. Численное интегрирование

3.1. Постановка задачи интегрирования

Численное интегрирование функции целесообразно использовать в тех случаях, когда: 1) первообразная F(x) не может быть найдена с помощью элементарных функций; 2) F(x) является слишком сложной; 3) подынтегральная функция f(x) задана таблично или неявно.

Будем рассматривать формулы приближенного вычисления интегралов

, где p(x) >0 - заданная интегрируемая функция (весовая) и f(x) - достаточно гладкая функция, x[a,b] и ck - числа, k=0,1,…,n..

Для составления квадратурных формул данную функцию f(x) заменяют интерполирующей функцией φ(x) и приближенно полагают

и затем вычисляют интеграл непосредственно, а оценку погрешности формулы определяют исходя из вида функции f(x).

3.2. Квадратурные формулы

Пусть для функции y=f(x) требуется вычислить интеграл J(f)= .

Выбрав шаг h= , разобьем отрезок [a, b] на n равных частей: x0=a, xi=x0+ih ( i=1, 2,…, n-1), xn=b и пусть yi=f(xi) ( i=0, 1, 2, …, n), p(x) =1.

Построим, например, полином Лагранжа:

f(x) L n (x) = +R n (x) .

Заменяя функцию f(x) соответствующим интерполяционным полиномом, получим квадратурную формулу

Рис. 3. 1

,

г де Ai - некоторые постоянные коэффициенты, не зависящие от функции f(x), а зависящие лишь от расположения узлов сетки xi.

Для формулы трапеции (n=1) p(x)=1, A0=A1=1/2.

= (y0+y1).

Остаточный член формулы трапеции равен:

R= - (y0+y1)= ,

где ξ (x0, x0+h).

Обобщенная формула трапеции для вычисления определенного интеграла на равномерной сетке, запишется так:

,

где R(h)= , М2= .

Ф ормула Симпсона при n=2 и p(x)=1. Интерполирование функции выполняется по трем ее значениям. A0=1/6, A1=2/3, A2=1/6 или, так как x2-x0=2h,

Рис. 3. 2

x2

(y0+4y1+y2).

Остаточный член формулы Симпсона равен

R= - (y0+4y1+y2)= ,

где ξ (x0,x2).

Обобщенная формула Симпсона для вычисления определенного интеграла на равномерной сетке и четного числа шагов, имеет вид:

,

где R(h)= , М4= .

Приведем формулу «трех восьмых» для вычисления определенного интеграла на равномерной сетке и числа шагов, кратного трем:

,

где R(h)= , М4= .

Задание. Вывести обобщенную формулу трапеции , заменив подынтегральную функцию f(x) линейным интерполяционным многочленом

f(x)=yi+(yi+1-yi)

на каждом отрезке [xi, xi+1] (i=0, 1,…, n-1), а формулу Симпсона получить, заменив подынтегральную функцию f(x) квадратичным интерполяционным многочленом

f(x)=yi+(yi+1-yi)

на каждом отрезке [xi, xi+2] (i=0, 2, 4,…, n-2).

С

Рис. 3. 3

амостоятельно получить формулы прямоугольника из вида площади на графике (рис.3.3). Вывести отдельно левую, правую и центральную формулы и их погрешности.

3.3. Выбор шага интегрирования

Для вычисления интеграла по выбранной формуле численного интегрирования с заданной точностью ε можно выбрать шаг h, обеспечивающий эту точность вычисления интеграла, используя формулу остаточного члена:

,

при этом вычисления следует производить с таким числом знаков, чтобы погрешность округления не превышала ε/2.

Другой способ заключается в последовательном удвоении количества шагов. Сначала вычисляется интеграл по выбранной квадратурной формуле при числе шага n, а затем при 2n. Погрешность приближенного значения интеграла определяется по правилу Рунге:

Δn= ,

где для формулы трапеции и для формулы Симпсона.

Процесс вычислений заканчивается, если для очередного значения n будет получена погрешность Δn = ε.

Следует учесть, что при удвоении числа шагов нет необходимости вычислять значения подынтегральной функции заново во всех узлах сетки, т. к. все они являются узлами сетки и при числе шагов 2n. Данный алгоритм может быть полезен при вычислении интеграла с разрывом.