Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1.Общий патфиз.doc
Скачиваний:
10
Добавлен:
09.11.2019
Размер:
345.6 Кб
Скачать

20. Субстрат реактивности и эволюция ее интегративных механизмов

Хотя понятие «реактивность» принадлежит организму как целому, конкретные механизмы реактивности могут реализоваться, преимущественно, на каком-либо из структурно-функциональных подуровней. Поэтому субстрат реактивности может быть условно отнесен к какому-то уровню организации живой системы. Говорят о реактивности на молекулярном, субклеточном, клеточном, тканевом и органном уровне, выделяют организменные и даже популяционные формы реактивности.На молекулярном уровне реактивности ключевое значение имеют комплементарные взаимодействия, основанные на однозначном структурном соответствии распознающих молекул.

Так, рецепторная субъединица аденилатциклазы специфически узнает пептидный биорегулятор и взаимодействует с ним по принципу «ключ-замок», что ведет к активации каталитической субъединицы этого фермента. Комплементарность проявляется во взаимодействиях ферментов и их субстратов, антигенов и антител, цис-регуляторных элементов хроматина и лигандов, изменяющих экспрессию генов.

Принцип комплементарности, с которым мы столкнулись уже при рассмотрении элементарного молекулярного уровня субстрата реактивности, носит сквозной характер и присутствует на всех уровнях организации живого.

Механизмы реактивности, свойственные ее субклеточному и клеточному уровням, подробно охарактеризованы в последующих разделах. В данном общем разделе хотелось бы только подчеркнуть, что молекулярные, субклеточные и клеточные механизмы реактивности несут на себе печать индивидуальности в той же мере, в какой и ее высшие интегральные проявления. Реактивность различна для тех или иных молекул, органоидов и клеток, взятых от различных индивидов и из различных тканей. Фетальный гемоглобин и гемоглобин А по-разному связывают кислород. Митохондрии скелетных мышц предпочитают в качестве энергетических субстратов активные одноуглеродные фрагменты, полученные из глюкозы, а митохондрии кардиомиоцитов — фрагменты, полученные из жирных кислот. Тканевой и кровяной тромбопластин различаются по составу и механизмам образования. Макрофаги разных тканей, например, печеночные клетки Купфера и остеокласты, несмотря на общность происхождения, выглядят по-разному и т.п.Следующими иерархическими уровнями субстрата реактивности являются тканевой и органный.Важной составляющей тканевого и органного субстрата реактивности является структурно-функциональный элемент органа (ткани).Несмотря на различия названий (нефрон почек, печеночная долька — в печени, двигательная единица — в мышце и т.д.) структурно-функциональные единицы органов и тканей имеют общие черты строения. По А. М. Чернуху, микроциркуляторные сосудистые единицы типичного строения служат [59] структурной осью, вокруг которой группируются соединительно-тканные элементы стромы органа, выполняющие опорную, трофическую и защитную функцию для элементов органной паренхимы. Значение этого оригинального подхода мы видим в том, что гистионы действительно служат первичной ареной защитно-приспособительных реакций, и такие патологические процессы, как воспаление, гиперемия, ишемия, стаз, тромбоз — развертываются именно в гистионах. Дублирование деятельности множества структурно-функциональных единиц, составляющих орган, определяет надежность системы, даже если при гибели элементы и не могут регенерировать. В основе деятельности каждой из систем, интегрирующих механизмы реактивности, будь то нервная, эндокринная или иммунная, лежит, опять-таки, комплементарное взаимодействие регулятора с рецепторно-дискриминаторной системой. Его сквозной характер не случаен: однозначное соответствие одной молекулы другой служит формой структурного отражения. А отражение — добиологическая основа реактивности. Комплементарные взаимодействия, вероятно, возникли раньше чем клетки. По крайней мере, известные нам доклеточные формы жизни — вирусы и прионы — способны к комплементарному взаимодействию с клетками. Прионы ведут себя, как некие комплементарные белковые сигналы, способные при попадании в клетку активировать древнейшие убиквитарные генетические программы, обеспечивающие воспроизводство этих агентов.Если жизнь началась с прионов, что вполне вероятно, это означало бы, что комплементарное взаимодействие было решающим шагом в ее появлении.Следовательно, эволюция реактивности использует путь нового поведенческого и интегративного комбинирования старых эволюционных находок, реактоны как эволюционные изобретения не пропадают, хотя и востребуются порой для иных функций. Эволюция выступает как множественные вариации на ограниченное число тем-архетипов.Альтернативное направление развития сигнализации у животных, обладающих циркуляцией жидкостей внутренней среды, обеспечило появление эндокринной регуляции, при которой сигнал выделяется в кровь или гемолимфу и действует на удалении от места продукции, не требуя проводника. Комбинированный нейроэндокринный способ, используемый, например, для секреции вазопрессина и окситоцина, предусматривает выделение биорегулятора в кровь после аксонального транспорта через аксовазальный синапс. Многие регуляторы и их рецепторы существуют как ауто- и паракринные у низших животных и приобретают значение эндокринных и нейромедиаторных — у высших. При этом их гены и структура остаются совсем или почти неизменными. Меняются те интегральные комбинации, типовые синергии, в составе которых используется данный биорегулятор или реактон.Сформировались представления о том, что у животных имеется коммуникативно-регуляторный интегративный аппарат деятельность которого осуществляется двумя способами — проводниковым (при электрической передаче сигнала) и гуморальным (на основе транспорта биорегуляторов через биологические жидкости организма). Нервные клетки используют оба способа, а мезенхимальные и эпителиальные — последний.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]