
- •Раздел III. Равновесные электродные процессы
- •Величины, характеризующие энергетическое состояние заряженных частиц
- •Эдс как сумма гальвани-потенциалов
- •Эдс как сумма вольта-потенциалов
- •Теория возникновения электродного потенциала и эдс
- •Гальвани-потенциал на границе двух металлов
- •Гальвани-потенциал на границе металл – раствор Осмотическая теория Нернста
- •Сольватационная теория электродного потенциала
- •Классификация электродов
- •Электроды первого рода
- •Электроды второго рода
- •Электроды третьего рода
- •Газовые электроды
- •Амальгамные электроды
- •Окислительно-восстановительные, или редокси-электроды
- •Физические цепи
- •Концентрационные цепи
- •Химические цепи
- •Аккумуляторы
- •Электрокинетические явления
- •Электрокапиллярные явления
- •Потенциалы нулевого заряда и нулевые точки металлов
- •Теория конденсированного двойного слоя Гельмгольца
- •Теория диффузного двойного слоя Гуи – Чапмана
- •Адсорбционная теория Штерна
- •Дальнейшее развитие теории строения дэс
Классификация электродов
Если на электроде протекает частная реакция
A A + ... + nF = L L + ... ,
то потенциал электрода определяется уравнением
E
= Eо
+
ln
,
то есть при заданных Т и р определяется (кроме Eо, который является константой) активностями веществ, участвующих в электродной реакции. Характер влияния активностей компонентов раствора на значение E связан с природой электродной реакции и лежит в основе классификации электродов. Принято различать электроды первого рода, второго рода, газовые, окислительно-восстановительные и некоторые специальные типы электродов (амальгамные, третьего рода и др.).
Электроды первого рода
Электроды первого рода представляют собой металл или металлоид (то есть неметалл с электронной проводимостью), погруженные в раствор своей соли. Электроды первого рода можно схематически представить в виде Мn+ М (если электрод металл) или в виде Меn– Ме (если электрод металлоид). Электродную реакцию записывают как
Mn+ + ne M или Me + ne Men– ;
=
+
ln
=
+ 2,303
lg
;
=
+
ln
=
2,303
lg
(так как активность чистого твердого вещества при заданной температуре постоянна и можно принять ее условно равной 1).
Из уравнений следует, что потенциал электрода первого рода зависит от активности лишь одного вида ионов; эти ионы называются потенциалоопределяющими. В случае металлических электродов первого рода такими ионами являются катионы металла, а в случае металлоидных электродов анионы металлоида. Примеры металлических электродов: металл, погруженный в раствор своей соли (Ag в растворе AgNO3 Ag+ Ag ; Cu в растворе CuSO4 Cu2+ Cu). Пример металлоидных электродов первого рода селеновый электрод Se2– Se.
Металлические электроды первого рода имеют большое практическое значение и легче реализуются, чем металлоидные.
Следует отметить, что в водных растворах нельзя реализовать как электроды первого рода электроды, обратимые по отношению к ионам щелочных и щелочноземельных металлов, так как в этом случае вместо обратимой реакции разряда-ионизации металла на электроде идет необратимый процесс разложения воды с выделением водорода:
Na
+ H2O
= Na+
+ 1/2 H2
+ OH–
.
Причина – большое отрицательное значение потенциалов этих электродов.
Электроды второго рода
Электроды второго рода представляют собой полуэлементы, состоящие из металла, покрытого слоем его труднорастворимого соединения (соли, оксида, гидроксида) и погруженного в раствор, содержащий тот же анион, что и труднорастворимое соединение электродного металла. Схематически электрод второго рода можно представить как An– MA M , а протекающую в нем реакцию
MA + ne = M + An– ;
=
+ 2,303
lg
=
2,303
lg
(учитывая, что активности металла и твердого соединения МА постоянны).
Таким образом, потенциал электрода второго рода определяется активностью анионов труднорастворимого соединения электродного металла. Однако электроды второго рода обратимы и по отношению к катионам электродного металла:
ПРМА
=
;
= 2,303 lg ПРМА + 2,303 lg =
+ 2,303 lg = .
Из сопоставления потенциалов соответствующих электродов первого и второго рода можно найти ПР труднорастворимых солей.
Потенциалы электродов второго рода легко воспроизводимы и устойчивы, поэтому эти электроды часто применяют в качестве электродов сравнения, по отношению к которым измеряют потенциалы других электродов. Наиболее важны в практическом отношении каломельные, ртутно-сульфатные, хлоридсеребряные, ртутнооксидные и сурьмяные электроды.
Каломельный электрод. Это ртуть, покрытая пастой из смеси каломели со ртутью, находящаяся в контакте с раствором KCl:
Cl– Hg2Cl2 Hg .
Электродная реакция: Hg2Cl2 + 2e = Hg + 2 Cl– ;
Eкал
= Eокал
2,303
lg
.
При 25оС Eкал = + 0,2678 0,059 lg .
Eкал определяется активностью ионов Cl–. Наиболее часто употребляются каломельные полуэлементы, в которых концентрация KCl насыщенный раствор, 1,0 М или 0,1 М. Каломельные электроды, особенно насыщенный, удобны тем, что диффузионный потенциал, возникающий на границе данного раствора с насыщенным KCl, незначителен и во многих случаях его можно не принимать во внимание.
Ртутно-сульфатный электрод SO42– Hg2SO4 Hg аналогичен каломельному, ртуть покрыта слоем пасты из ртути и сульфата ртути (I), а в качестве раствора используется H2SO4. При 25оС
Eрт.с.
= + 0,6156
0,0296 lg
.
Хлоридсеребряный электрод представляет собой систему
Cl– AgCl Ag ;
Eхс = Eохс 2,303 lg = + 0,2224 0,059 lg .
Ртутно-сульфатный и хлоридсеребряный электроды целесообразно применять в тех случаях, когда исследуемый полуэлемент содержит в качестве электролита либо серную кислоту или сульфаты, либо соляную кислоту или хлориды. Чтобы уменьшить величину диффузионного потенциала, концентрацию этих электролитов в электродах сравнения следует брать такую же, как и в исследуемых полуэлементах.
Металлоксидные электроды интересны тем, что здесь в роли анионов труднорастворимого соединения электродного металла выступают ионы гидроксида. К ним относятся, например, ртутнооксидный и сурьмяный электроды:
OH– HgO Hg и OH– Sb2O3 Sb .
Уравнения электродных реакций и потенциалов этих электродов:
HgO
+ H2O
+ 2e
= Hg
+ 2OH–
Eрт.окс.
= Eорт.окс.
2,303
lg
;
Sb2O3 + 3H2O + 6e = 2Sb + 6OH– Eсурьм. = Eосурьм. 2,303 lg .
Уравнения для электродного потенциала получены при допущении, что постоянны активности не только соответствующих металлов и их оксидов, но и воды, также принимающей участие в электродной реакции.
Металлоксидные электрода второго рода, как и металлсолевые электроды второго рода, обратимы по отношению не только к ионам гидроксила, но и к ионам электродного металла. Кроме того, они обратимы и по отношению к ионам водорода, потому что ионное произведение воды при заданной Т постоянно для любого водного раствора электролита.
Металлоксидные электроды можно применять как электроды сравнения в любых растворах кислот и щелочей, однако ртутнооксидный электрод вследствие заметной растворимости оксидов ртути в кислотах можно рекомендовать лишь для растворов с рН 7. Сурьмяный электрод из-за неустойчивости состава его поверхностного оксида применять как электрод сравнения нельзя; он используется в качестве индикаторного электрода для приближенных определений рН в умеренно кислых и нейтральных растворах.