Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Е.Б.Яковлев, Г.Д.Шандыбина. Взаимодействие лазе...docx
Скачиваний:
128
Добавлен:
07.11.2019
Размер:
5.23 Mб
Скачать

1. Основные положения классической электродинамики.

Существуют три основных подхода к описанию явлений, связанных с взаимодействием оптического излучения с веществом: классический, полуклассический и квантово-механический.

При классическом описании излучение представляют в виде электромагнитных волн, а вещество  в виде непрерывной среды, характеризуемой определенными оптическими макропараметрами. В этом случае используют уравнения Максвелла, дополненные материальными уравнениями, атомарная структура вещества игнорируется. В рамках макроскопического подхода (теория Максвелла) механизм воздействия световой волны на вещество можно описать следующим образом. Падающая электромагнитная волна индуцирует в материале переменные токи, часть энергии которых преобразуется в джоулево тепло (поглощение), а часть - расходуется на генерирование вторичных электромагнитных полей. При этом происходит распространение излучения в веществе путем непрерывного поглощения и переизлучения электромагнитных волн.

При полуклассическом приближении (микроскопическая теория Лоренца) поле электромагнитного излучения описывают уравнениями Максвелла, а при описании материального объекта используют квантовомеханические представления. В этом случае оптические параметры не постулируют, а рассчитывают на основе данных об атомарной структуре и динамике среды с учетом вероятностей соответствующих квантовых переходов. В теории Лоренца переменное поле электромагнитной волны периодически ускоряет (раскачивает) многочисленные микроскопические заряды вещества. Ускоренные полем заряды теряют избыток полученной энергии либо путем передачи ее своему ближайшему окружению, либо путем излучения новых электромагнитных волн. В первом случае происходит поглощение энергии, падающей на вещество электромагнитной волны, а во втором - распространение излучения в среде путем непрерывного поглощения и переизлучения электромагнитных волн заряженными частицами вещества.

При квантовомеханическом описании излучение и вещество рассматривают как единую квантовую систему.

Ее описывают гамильтонианом

(1.0)

Здесь  гамильтониан свободного излучения,  гамильтониан вещества в отсутствие излучения,  гамильтониан взаимодействия излучения с веществом. Гамильтониан свободного излучения можно представить как

(1.1)

где и  операторы соответственно уничтожения и рождения фотона (с частотой ) в - м состоянии, , где - постоянная Планка.

Для кристалла гамильтониан удобно представить в виде

, (1.2)

где  гамильтониан кристаллической решетки («фононный» гамильтониан),  «электронный» гамильтониан,  гамильтониан взаимодействия электронов с фононами (опускаемый при использовании адиабатического приближения). Фононный гамильтониан описывают выражением, аналогичным выражению (1.1), а гамильтониан удобно представить в виде

,

где описывает взаимодействие фотонов с электронами кристалла, а  взаимодействие фотонов с фононами.

Наиболее полным и последовательным является, квантовомеханическое описание, которое позволяет учесть все аспекты взаимодействия, связанные как с изменением состояний вещества, так и с изменением состояний поля излучения.

Классическое описание является предельным случаем, существенно упрощающим рассмотрение процессов взаимодействия излучения с веществом. Основные ограничения применимости классического описания связаны с двумя обстоятельствами. Во-первых, должно быть оправданным классическое представление излучения в виде световых волн. Во-вторых, в рассматриваемой задаче должны быть несущественными атомарная структура и динамика среды.

Полуклассический подход надо рассматривать как некий компромиссный вариант, не имеющий строгого обоснования. Его существенным недостатком является тот факт, что поле излучения является заранее заданным внешним возмущением. Это позволяет рассчитывать изменение состояний вещества, но не дает возможности рассчитывать изменения поля излучения. В этом смысле полуклассическое описание «уступает» как квантовомеханическому, так и классическому, поскольку последние дают последовательную картину взаимодействия излучения и вещества, хотя и с разной полнотой рассмотрения.

Большинство оптических явлений, происходящих при взаимодействии лазерного излучения с веществом и используемых в лазерных технологиях, может быть качественно и количественно объяснено на основе классического подхода. Мы будем пользоваться почти исключительно этим подходом.