- •Часть I
- •Оглавление
- •Предисловие
- •Введение
- •1. Основные положения классической электродинамики.
- •1.0. Уравнения Максвелла.
- •1.0.0. Решение уравнений Максвелла для непоглощающего диэлектрика
- •1.0.1. Свойства электромагнитной волны
- •1.0.1.0. Энергия электромагнитной волны
- •1.0.1.1. Давление света
- •1.0.1.2. Закон Снеллиуса
- •1.1. Оптические характеристики проводящих сред
- •1.1.1. Оптические постоянные вещества и его микрохарактеристики
- •1.1.1.0. Временная дисперсия
- •1.1.1.1. Временная дисперсия и частота излучения
- •1.1.1.2. Пространственная дисперсия
- •1.1.2. Дисперсионные соотношения
- •0. Поглощение излучения металлами и их оптические свойства
- •0.0. Распространение электромагнитных волн в проводящих средах. Основные уравнения оптики металлов
- •0.0.0. Скин-эффект и его свойства
- •0.1. Оптические свойства металлов
- •0. Поглощение света и передача энергии в полупроводниках
- •0.0. Оптические процессы в поглощающих полупроводниках
- •0.1. Рекомбинация и захват электронов и дырок в полупроводниках
- •0.2. Процессы передачи энергии в поглощающих полупроводниках
- •0.2.1. Особенности собственного поглощения
- •0.2.2. Внутризонное поглощение
- •0.3. Кинетика фотовозбуждения полупроводников лазерным излучением
- •0.4. Насыщение межзонного поглощения
- •0. Влияние интенсивности излучения на оптические свойства вещества. Нелинейная оптика
- •0.0. Основные эффекты нелинейной оптики
- •0.1. Материальное уравнение нелинейной среды
- •0.2. Нелинейный осциллятор
- •0.2.1. Метод возмущений
- •0.2.2.0. Линейное приближение
- •0.2.3.1. Расчет нелинейной поправки
- •0.3. Осциллятор с кубичной нелинейностью. Зависимость частоты колебаний от амплитуды
- •0.4. Самовоздействие света в нелинейной среде. Самофокусировка
- •0.5. Явление самоиндуцируемой прозрачности
- •0.6. Неоднородный ансамбль нелинейных осцилляторов. Световое эхо
- •0. Изменение поглощательной способности прозрачных диэлектриков в процессе лазерного облучения
- •0.0. Физические представления о механизмах изменения поглощения в идеальных диэлектриках
- •0.0.0. Фотоионизация газа
- •0.0.1. Многофотонная ионизация.
- •0.0.2. Лавинная ударная ионизация
- •0.0.3. Изменение поглощения в идеально чистых прозрачных твердых телах
- •0.0.4. Роль вынужденного рассеяния Мандельштама Бриллюэна
- •0.1. Оптические свойства реальных оптических материалов и покрытий
- •0.1.0. Механизмы инициирования объемного поглощения в первоначально прозрачной среде
- •0. Поверхностные электромагнитные волны оптического диапазона
- •0.0. Основные свойства пэв, структура и распределение полей, условия существования, дисперсионное соотношение
- •0.1. Поверхностные плазмон-поляритоны на границе металла с диэлектриком
- •0.2. Методы возбуждения пэв
- •0.2.0. Призменный метод возбуждения пэв
- •0.2.1. Возбуждение пэв на решетке
- •0.3. Цилиндрические пэв
- •0. Оптическая «левитация»
- •0.0. Оптическая «левитация» малых прозрачных частиц
- •0.1. Элементы теории оптической «левитации»
- •0.1.0. Геометрия отражения и преломления.
- •0.1.1. Энергетика отражения и преломления
- •0.1.2. Формулы Френеля.
- •0.1.3. Силы светового давления
- •0.1.4. Световое давление вдоль пучка
- •0.1.5. Световое давление поперек пучка
- •0.2. Численные оценки
- •Вопросы для самопроверки
- •Рекомендуемая литература
- •Кафедра лазерных технологий и экологического приборостроения
- •История кафедры лт и эп делится на
- •4 Разных периода:
- •1) Лазерное формирование многофункциональных зондов (мз) для зондовой микроскопии с целью создания универсальных зондовых микроскопов.
- •3) Наноструктурирование тонких металлических и полупроводниковых слоев.
- •4) Управление микрогеометрией, наношероховатостью и физико–химичекими свойствами поверхности материалов
- •2. Лаборатория лазерной очистки и реставрации произведений культуры и искусства (пкин) организована совместно с фирмой ооо «Мобильные лазерные системы».
- •Евгений Борисович Яковлев, Галина Дмитриевна Шандыбина Взаимодействие лазерного излучения с веществом (силовая оптика).
Предисловие
В основу учебного пособия положен курс лекций, который на протяжении многих лет читал Лауреат Государственной премии СССР; заслуженный деятель науки и техники Российской Федерации, доктор физико-математических наук, профессор Михаил Наумович Либенсон.
В разные годы им были рассмотрены проблемы лазерного нагрева металлов и металлических пленок с учетом кинетики изменения их оптических свойств; фотовозбуждения и нагрева полупроводников интенсивным излучением; оптического пробоя диэлектриков сложного химического состава. Был предложен и исследован термохимический механизм взаимодействия непрерывного лазерного излучения с металлами в окислительной среде (на воздухе). В начале 80-х годов М.Н. Либенсон впервые обратил внимание на важную роль генерации поверхностных поляритонов и волноводных мод в процессе лазерного термического воздействия на поверхность различных материалов и предложил поляритонный механизм самоорганизации лазерно-индуцированного поверхностного рельефа – широко распространенного эффекта при лазерных воздействиях. В различные годы им были предложены и теоретически изучены несколько эффективных механизмов лазерно-индуцированных неустойчивостей в конденсированных средах, в том числе при действии сверхкоротких (фемтосекундных) импульсов. В последние годы он развивал представления о взаимодействии лазерного излучения с поверхностью в устройствах ближнепольной оптики, когда область локализации света значительно меньше длины его волны.
Введение
В 60-е годы прошлого века сформировалась «тепловая модель» взаимодействия лазерного излучения с поглощающими материалами. Согласно этой модели можно рассматривать независимо друг от друга четыре стадии воздействия
- поглощение света и переход поглощенной энергии в тепловую;
- нагрев материалов без разрушения;
- разрушение и разлет продуктов разрушения;
- остывание.
Тепловая модель позволила успешно описать теплопроводностное распространение тепла, плавление, модификацию структуры вещества, стимулированную нагреванием, испарение, разлет продуктов разрушения. Выводы тепловой модели хорошо совпадают с результатами различных экспериментов.
Световые волны, в том числе и лазерное излучение, это электромагнитные волны определенного спектрального диапазона. Мы будем рассматривать оптический диапазон длин волн. К оптическому диапазону принадлежит инфракрасное (ИК) излучение, видимый свет, ультрафиолетовое (УФ) излучение и рентгеновское излучение низкой частоты. Именно в оптическом диапазоне работают широко применяемые в лазерных технологиях источники.
Материал этой части посвящен первой стадии воздействия лазерного излучения на вещества: поглощению, рассеянию и дисперсии световых волн. Описание этих явлений возможно в рамках классической электродинамики. При этом можно установить основные закономерности перечисленных процессов. Следует отметить, что определить такие важные для анализа лазерного воздействия оптические характеристики материалов, как коэффициент отражения , поглощательную способность и пропускание возможно, используя макроскопическую теорию Максвелла совместно с микроскопической теорией Лоренца.
Напомним, что теория Максвелла - феноменологическая: в ней оптические свойства материала связаны с электрическими через диэлектрическую проницаемость , магнитную проницаемость , удельную электропроводимость , которые предполагаются известными из опыта.
Электронная теория Лоренца определяет микроскопические электромагнитные поля, создаваемые отдельными заряженными частицами, придавая физический смысл макроскопическим постоянным , , в уравнениях Максвелла.