
- •6. Биологические мембраны. Их строение и функции.
- •7.Белки – полимеры аминокислоты. Пептидная связь. Первичная структура белков.
- •8. Водородные связи между пептидными группами – основа вторичной структуры белков. Основные виды вторичных структур.
- •9. Третичная структура белка. Силы, поддерживающие третичную структуру. Глобулярные белки.
- •10. Четвертичная структура белков.
- •11.Функции белков в живых организмах.
- •12. Каталитическая функция белков. Особенности ферментов, отличающие их от небиологических катализаторов.
- •13. Структурная функция белков. Фибриллярные белки.
- •14. Нуклеотиды. Функции нуклеотидов в живых клетках.
- •15. Днк: строение полинуклеотидной цепи, двойная спираль. Принцип комплементарности. Репликация днк
- •16. Строение рнк. Транскрипция – синтез рнк на матрице днк. Регуляция транскрипции.
- •17. Матричные рнк – переносчики генетической информации. Генетический код.
- •18. Транспортные рнк. Активация аминокислот.
- •19. Рибосомные рнк. Строение и функции рибосом.
- •20. Трансляция – синтез белка на матрице рнк. Инициация, элонгация и терминация трансляции.
- •21. Цикл элонгации трансляции.
- •22. Клетка. Клеточная теория. Прокариоты и эукариоты.
- •23. Строение прокариотической клетки.
- •24. Ядро эукариотической клетки.
- •25. Клеточная мембрана, её строение и функции. Клеточные стенки.
- •26. Одномембранные органеллы цитоплазмы: эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы.
- •27. Митохондрии, их строение и функции. Происхождение митохондрий.
- •28. Пластиды. Виды пластид, их функции. Внутреннее строение пластид.
- •29. Обмен веществ и превращение энергии в клетке. Автотрофные и гетеротрофные организмы. Фотоавтотрофы и хемоавтотрофы.
- •31. Цикл ди- и трикарбоновых кислот (цикл Сент-Дьёрди-Кребса).
- •32. Окислительное фосфорилирование в митохондриях.
- •33. Фотосинтез – образование органических веществ из неорганических за счёт энергии света. Световая стадия фотосинтеза, её локализация и продукты.
- •34. Темновая стадия фотосинтеза. Локализация в клетке. Исходные вещества и продукты темновой стадии. Общее уравнение фотосинтеза.
- •35. Клеточный цикл. Митоз как основной способ деления эукариотических клеток. Фазы митоза.
- •36. Половой процесс. Виды полового процесса.
- •37. Мейоз. Фазы мейоза. Биологический смысл мейоза.
- •38. Продукты мейоза в разных группах организмов. Чередование гаплоидной и диплоидной фазы в жизненных циклах.
- •39. Наследственность. Моногибридное скрещивание. Первый и второй законы Менделя.
- •40. Дигибридное скрещивание. Третий закон Менделя. Анализирующее скрещивание.
- •41. Взаимодействие неаллельных генов. Комплементация и эпистаз.
- •42. Сцепленное наследование. Хромосомная теория наследственности.
- •43. Генетическое определение пола. Наследование, сцепленное с полом.
13. Структурная функция белков. Фибриллярные белки.
Структурная функция белков заключается в том, что
-белки участвуют в образовании практически всех органоидов клеток, во многом определяя их структуру (форму);
-образуют цитоскелет, придающий форму клеткам и многим органоидам и обеспечивающий механическую форму ряда тканей;
-входят в состав межклеточного вещества, во многом определяющего структуру тканей и форму тела животных.
(Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. Большинство структурных белков являются филаментозными белками: например, мономеры актина и тубулина — это глобулярные, растворимые белки, но после полимеризации они формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форм . Коллаген и эластин — основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.)
В теле человека белков межклеточного вещества больше, чем всех остальных белков. Основными структурными белками межклеточного вещества являются фибриллярные белки.
Фибриллярные белки — образуют полимеры, их структура обычно высокорегулярна и поддерживается, в основном, взаимодействиями между разными цепями. Они образуют микрофиламенты, микротрубочки, фибриллы, поддерживают структуру клеток и тканей. К фибриллярным белкам относятся кератин , коллаген, белок шелка - фиброин, выделяемый гусеницами шелкопряда.
К фибриллярным белкам относят:
-α-структурные фибриллярные белки (кератины, на долю которых приходится почти весь сухой вес волос и других роговых покровов, тропомиозин, белки промежуточных филаментов)
-β-структурные фибриллярные белки (фиброин шёлка)
-коллаген — белок сухожилий и хрящей.
Один из основных структурных белков — кератин. В основном из кератина состоят мертвые клетки ороговевающего эпителия и их производные (волосы млекопитющих, рога, копыта, когти, перья птиц, чешуя рептилий и др.). В живых клетках эпителиальных тканей кератины образуют промежуточные филаменты.
Кератины разделяются на две группы: α-кератины и β-кератины. Прочность кератина уступает, пожалуй, только хитину. Характерной особенностью кератинов является их полная нерастворимость в воде при pH 7,0. Содержат в молекуле остатки всех аминокислот. Отличаются от других фибриллярных структурных белков (например, коллагена) в первую очередь повышенным содержанием остатков цистеина. Первичная структура полипептидных цепей a-кератинов не имеет периодичности.
Коллагены — семейство белков, в теле человека составляют до 25 — 30 % общей массы всех белков. Кроме структурной функции коллаген выполняет также механическую, защитную, питательную и репаративную функции. Молекула коллагена представляет собой правозакрученную спираль из трёх α-цепей. Всего у человека имеется 28 типов коллагена. Все они сходны по структуре.
14. Нуклеотиды. Функции нуклеотидов в живых клетках.
Нуклеотиды, природные соединения, из которых, как из звеньев, построены цепочки нуклеиновых кислот; входят также в состав важнейших коферментов (органические соединения небелковой природы – компонент некоторых ферментов) и других биологически активных веществ, служат в клетках переносчиками энергии.
Молекула каждого нуклеотида (мононуклеотида) состоит из трёх химически различных частей. Во-первых, это пятиуглеродный сахар (пентоза) – рибоза (в этом случае нуклеотиды называются рибонуклеотидами и входят в состав рибонуклеиновых кислот, или РНК) или дезоксирибоза (нуклеотиды называются дезоксирибонуклеотидами и входят в состав дезоксирибонуклеиновых кислот, или ДНК). Во-вторых, это пуриновое или пиримидиновое азотистое основание. Связанное с углеродным атомом сахара, оно образует соединение, называемое нуклеозидом. И наконец, один, два или три остатка фосфорной кислоты, присоединённые эфирными связями к углероду сахара, образуют молекулу нуклеотида. Азотистые основания нуклеотидов ДНК – это пурины аденин и гуанин и пиримидины цитозин и тимин. Нуклеотиды РНК содержат те же основания, что и ДНК, но тимин в них заменён близким по химическому строению урацилом.
Азотистые основания и, соответственно, включающие их нуклеотиды в биологической литературе принято обозначать начальными буквами (латинскими или русскими) их названий: аденин – А(А), гуанин – G(Г), цитозин – С(Ц), тимин – Т(Т), урацил – U(У). Соединение двух нуклеотидов называется динуклеотидом, нескольких – олинонуклеотидом, множества – полинуклеотидом, или нуклеиновой кислотой.
Кроме того что нуклеотиды образуют цепи ДНК и РНК, они являются коферментами, а нуклеотиды, несущие три остатка фосфорной кислоты (нуклеозидтрифосфаты), – источниками химической энергии, заключённой в фосфатных связях. Чрезвычайно велика во всех процессах жизнедеятельности роль такого универсального переносчика энергии, как аденозинтрифосат (АТФ).
Особую группу составляют циклические нуклеотиды, опосредующие действие гормонов при регуляции обмена веществ в клетках.
!!!!!Кратенько(. Нуклеотиды – мономеры нуклеиновых кислот – состоят из:
1) азотистого основания (у всех нуклеиновых кислот)
2) пентозы (рибозы у РНК или дезоксирибозы у ДНК)
3) остатка фосфорной кислоты
Азотистое основание + пентоза = нуклеозид.)
Свойства нуклеотидов: 1) отрицательно заряжены (за счет фосфатных групп) 2) циклические соединения 3) гидрофобны (то физическое свойство молекулы, которая «стремится» избежать контакта с водой)4) поглощают свет при 260 нм (УФ область).
Функции нуклеотидов:
1) структурная – мономеры нуклеиновых кислот, входят в состав коферментов
2) энергетическая (АТФ - это универсальный аккумулятор энергии, энергия УТФ используется для синтеза гликогена, ЦТФ - для синтеза липидов, ГТФ - для движения рибосом в ходе трансляции (биосинтез белка) и передачи гормонального сигнала (G-белок)
3) регуляторная - аллостерические эффекторы многих ключевых ферментов, цАМФ и цГМФ являются посредниками в передаче гормонального сигнала при действии многих гормонов на клетку и активаторами протеинкиназы(Протеинкина́зы — подкласс ферментов киназ (фосфотрансфераз). Протеинкиназы модифицируют другие белки путем фосфорилирования остатков аминокислот, имеющих гидроксильные группы (серин, треонин и тирозин) или гетероциклической аминогруппы гистидина.)