
- •6. Биологические мембраны. Их строение и функции.
- •7.Белки – полимеры аминокислоты. Пептидная связь. Первичная структура белков.
- •8. Водородные связи между пептидными группами – основа вторичной структуры белков. Основные виды вторичных структур.
- •9. Третичная структура белка. Силы, поддерживающие третичную структуру. Глобулярные белки.
- •10. Четвертичная структура белков.
- •11.Функции белков в живых организмах.
- •12. Каталитическая функция белков. Особенности ферментов, отличающие их от небиологических катализаторов.
- •13. Структурная функция белков. Фибриллярные белки.
- •14. Нуклеотиды. Функции нуклеотидов в живых клетках.
- •15. Днк: строение полинуклеотидной цепи, двойная спираль. Принцип комплементарности. Репликация днк
- •16. Строение рнк. Транскрипция – синтез рнк на матрице днк. Регуляция транскрипции.
- •17. Матричные рнк – переносчики генетической информации. Генетический код.
- •18. Транспортные рнк. Активация аминокислот.
- •19. Рибосомные рнк. Строение и функции рибосом.
- •20. Трансляция – синтез белка на матрице рнк. Инициация, элонгация и терминация трансляции.
- •21. Цикл элонгации трансляции.
- •22. Клетка. Клеточная теория. Прокариоты и эукариоты.
- •23. Строение прокариотической клетки.
- •24. Ядро эукариотической клетки.
- •25. Клеточная мембрана, её строение и функции. Клеточные стенки.
- •26. Одномембранные органеллы цитоплазмы: эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы.
- •27. Митохондрии, их строение и функции. Происхождение митохондрий.
- •28. Пластиды. Виды пластид, их функции. Внутреннее строение пластид.
- •29. Обмен веществ и превращение энергии в клетке. Автотрофные и гетеротрофные организмы. Фотоавтотрофы и хемоавтотрофы.
- •31. Цикл ди- и трикарбоновых кислот (цикл Сент-Дьёрди-Кребса).
- •32. Окислительное фосфорилирование в митохондриях.
- •33. Фотосинтез – образование органических веществ из неорганических за счёт энергии света. Световая стадия фотосинтеза, её локализация и продукты.
- •34. Темновая стадия фотосинтеза. Локализация в клетке. Исходные вещества и продукты темновой стадии. Общее уравнение фотосинтеза.
- •35. Клеточный цикл. Митоз как основной способ деления эукариотических клеток. Фазы митоза.
- •36. Половой процесс. Виды полового процесса.
- •37. Мейоз. Фазы мейоза. Биологический смысл мейоза.
- •38. Продукты мейоза в разных группах организмов. Чередование гаплоидной и диплоидной фазы в жизненных циклах.
- •39. Наследственность. Моногибридное скрещивание. Первый и второй законы Менделя.
- •40. Дигибридное скрещивание. Третий закон Менделя. Анализирующее скрещивание.
- •41. Взаимодействие неаллельных генов. Комплементация и эпистаз.
- •42. Сцепленное наследование. Хромосомная теория наследственности.
- •43. Генетическое определение пола. Наследование, сцепленное с полом.
12. Каталитическая функция белков. Особенности ферментов, отличающие их от небиологических катализаторов.
Одна из важнейших их функций в организме – ферментативная (от греч.– брожение, закваска). В каждой живой клетке
непрерывно происходят сотни тысяч биохимических реакций. В ходе этих реакций идет распад и окисление поступающих извне питательных веществ. Используется энергия, полученная за счет их окисления, а продукты их расщепления служат для синтеза необходимых в данный момент органических соединений. Если бы мы захотели провести эти реакции вне организма с такой же, как в организме, скоростью, то в большинстве случаев нам потребовалось бы увеличивать давление, значительно повышать температуру и создавать другие особые условия. Быстрое протекание таких реакций в организме обеспечивают биологические катализаторы, ускорители реакций, - ферменты.
Описано более 2000 ферментов, и биохимики продолжают обнаруживать все новые и новые. Одна молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов одинаковых операций в минуту. В ходе этих операций ферментный белок обычно не расходуется. Он соединяется с реагирующими веществами, ускоряет их превращения и выходит из реакции неизменным.
Вещество, превращение которого осуществляет фермент, называют субстратом. В результате превращения субстрата возникает продукт реакции. После ферментативной реакции продукт отсоединяется от молекулы фермента и она становится способной соединиться с новой молекулой субстрата.( Например, фермент амилаза расщепляет крахмал до мальтозы, которая в свою очередь под действием фермента мальтазы гидролизуется с образованием двух молекул глюкозы)
Общее между ферментами и неорганическими катализаторами:
1. Увеличивают скорость химических реакций, при этом сами не расходуются.
2. Ферменты и неорганические катализаторы ускоряют энергетически возможные реакции.
3. Энергия химической системы остается постоянной.
4. В ходе катализа(процесс, заключающийся в изменении скорости химических реакций в присутствии веществ, называемых катализаторами) направление реакции не изменяется.
Различия между ферментами и неорганическими катализаторами:
1. Скорость ферментативных реакций выше, чем реакций, катализируемых неорганическими катализаторами.
2. Ферменты обладают высокой специфичностью к субстрату(вещество, превращение которого осуществляет фермент).
3. Ферменты по своей химической природе белки, катализаторы - неорганика.
4. Ферменты работают только в определённом диапазоне температур (обычно в районе 37 град. С плюс/минус 2-3 град.С)., а скорость неорганического катализа возрастает в 2-4 раза при повышении температуры на каждые 10 град. С по линейной зависимости (правило Вант-Гоффа).
5. Ферменты подвержены регуляции (есть активаторы и ингибиторы(вещество, замедляющее или предотвращающее течение какой-либо химической реакции: коррозии металла, старения полимеров) ферментов), неорганические катализаторы работают нерегулируемо.
6. Ферменты обладают конформационной лабильностью - способностью к небольшим изменениям своей структуры за счет разрыва и образования новых слабых связей.
7. Ферментативные реакции протекают только в физиологических условиях, т.к. работают внутри клеток, тканей и организма (это определенные значения температуры, давления и рН).