Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛЕКЦИИ ИНВЕСТИЦИИ 2010-1.doc
Скачиваний:
1
Добавлен:
26.09.2019
Размер:
505.34 Кб
Скачать

Тема: Проблемы оптимизации бюджета капиталовложений

Довольно часто при составлении бюджета капитальных вложений приходится учитывать ряд ограничений. Например, имеется несколько привлекательных инвестиционных проектов, однако предприятие из-за ограниченности в финансовых ресурсах не может осуществить их все одновременно. В этом случае необходимо отобрать для реализации проекты так, чтобы получить максимальную выгоду от инвестирования. Как правило, основной целевой установкой в подобных случаях является максимизация суммарного NPV. Рассмотрим наиболее типовые ситуации, требующие оптимизации распределения инвестиций. Более сложные задачи оптимизации инвестиционных портфелей решаются с помощью методов линейного программирования.

  1. Пространственная оптимизация

Пространственная оптимизация бюджета капиталовложений проводится при наличии определенных условий:

  • общая сумма финансовых ресурсов на конкретный период (например, год) ограничена сверху;

  • имеется несколько независимых проектов с суммарным объемом требуемых инвестиций, превышающим имеющиеся у предприятия ресурсы;

  • требуется составить инвестиционный портфель, максимизирующий суммарный возможный прирост капитала.

На первый взгляд, в портфель нужно включить все проекты с максимальным значением NPV. Такое решение является самым простым, но не обязательно оптимальным. Кроме того, если число конкурирующих проектов велико, то перебор вариантов на предмет соответствия ограничению по объему суммарных инвестиций может быть достаточно утомительным.

В зависимости от того, поддаются дроблению рассматриваемые проекты или нет, возможны различные способы решения данной задачи. Рассмотрим их последовательно.

Рассматриваемые проекты поддаются дроблению

Допустим, что рассматриваемые проекты поддаются дроблению, т. е. можно реализовать не только полностью каждый из анализируемых проектов, но и любую его часть (при этом берется к рассмотрению соответствующая доля инвестиций и денежных поступлений). Так как в этом случае объем инвестиций по любому проекту может быть сколь угодно малым, максимальный суммарный эффект достигается при наибольшей эффективности использования вложенных средств. Выше отмечалось, что критерием, характеризующим эффективность использования каждого инвестированного рубля, является показатель РI. При прочих равных условиях проекты, имеющие наибольшие значения РI, являются более предпочтительными с позиции отдачи на инвестированный капитал.

Порядок оптимизации следующий:

  • для каждого проекта рассчитывается PI;

  • проекты упорядочиваются по убыванию РI;

  • в инвестиционный портфель включаются первые k проектов, которые в сумме в полном объеме могут быть профинансированы предприятием;

  • очередной проект берется не в полном объеме, а лишь в той части, в которой он может быть профинансирован.

Рассмотрим пример.

Пример C

Предприятие имеет возможность инвестировать а) до 55 млн руб.; б) до 90 млн руб., при этом цена источников финансирования составляет 10%. Требуется составить оптимальный инвестиционный портфель, если имеются следующие альтернативные проекты:

проект А: -30, 6, 11, 13, 12;

проект В: -20, 4, 8, 12, 5;

проект С: -40, 12, 15, 15, 15;

проект D: -15, 4, 5, 6, 6.

Рассчитаем чистый приведенный доход (NPV) и индекс рентабельности (РI) для каждого проекта:

проект А: NPV = 2,51; PI = 1,084; IRR = 13,4%

проект В: NPV = 2,68; PI = 1,134; IRR = 15,6%

проект С: NPV = 4,82; PI = 1,121; IRR = 15,3%

проект D: NPV = 1,37; PI = 1,091; IRR = 13,9%.

Таким образом, по убыванию показателя PI проекты упорядочиваются следующим образом: B, C, D, A.

Наиболее оптимальная структура бюджета капиталовложений для варианта (а) представлена в таблице 8:

Проект

Величина инвестиций

Часть инвестиций, включаемая в портфель, %

NPV

В

20

100,0

2,68

С

35

87,5

4,22

Всего

55

6,90

Таблица C

Можно проверить, что любое другое сочетание ухудшает результаты - уменьшает суммарный NPV. В частности, проверим вариант, когда проект С, как имеющий наивысший NPV, в полном объеме включается в портфель (см. табл. 9).

Проект

Величина инвестиций

Часть инвестиций, включаемая в портфель, %

NPV

С

40

100,0

4,82

В

15

75,0

2,01

Всего

55

6,83

Таблица D

Таким образом, действительно была найдена оптимальная стратегия формирования инвестиционного портфеля. Наиболее оптимальная структура инвестиционного портфеля для варианта (б) представлена в таблице 10.

Проект

Величина инвестиций

Часть инвестиций, включаемая в портфель, %

NPV

В

20

100,0

2,68

С

40

100,0

4,82

D

15

100,0

1,37

A

15

50,0

1,26

Всего

90

10,13

Таблица E

Рассматриваемые проекты не поддаются дроблению

Если рассматриваемые проекты дроблению не поддаются, оптимальную структуру бюджета капиталовложений определяют перебором всех возможных вариантов сочетания проектов и расчетом суммарного NPV для каждого варианта. Комбинация, максимизирующая суммарный NPV, будет оптимальной. Рассмотрим пример.

Пример D

В условиях предыдущего примера составить оптимальный инвестиционный портфель, если верхний предел величины вложений составляет 55 млн руб. и проекты не поддаются дроблению.

Возможны следующие сочетания проектов в портфеле: А+В, A+D, B+D, C+D. Рассчитаем суммарный NPV для каждого варианта (см. табл. 11).

Вариант

Суммарные инвестиции

Суммарный NPV

А + В

50 (30 + 20)

5,19 (2,51 + 2,68)

А + D

45(30+15)

3,88 (2,51 + 1,37)

В + D

35(20+15)

4,05 (2,68 + 1,37)

С + D

55(40+15)

6,19 (4,82 + 1,37)

Таблица F

Итак, оптимальным является инвестиционный портфель, включающий проекты С и D.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.