
- •Технические измерения и приборы
- •Введение
- •Измеряемые и регулируемые величины
- •1. Государственная система приборов
- •1.1. Основные понятия и определения гсп
- •1.2. Принципы построения гсп
- •1.3. Классификация средств измерения и автоматизации гсп
- •1.3.1. Функциональные группы изделий гсп
- •1.3.2. Примеры агрегатных комплексов
- •1.4. Основные ветви системы
- •Контрольные вопросы
- •2. Общие характеристики средств измерения
- •2.1. Классификация средств измерения
- •2.1.1. Классификация компонентов измерительных устройств
- •2.2. Типовые структурные схемы измерительных устройств
- •2.2.1. Структурные схемы средств измерения неэлектрических величин
- •2.2.2. Структурные схемы измерительных систем
- •2.3. Статические характеристики и параметры измерительных устройств
- •2.4. Динамические характеристики измерительных устройств
- •2.5. Погрешности средств измерений
- •2.6. Нормирование метрологических характеристик средств измерений
- •2.6.1. Нормирование метрологических характеристик измерительных устройств
- •2.6.2. Нормирование метрологических характеристик измерительных систем
- •Контрольные вопросы
- •3. Измерительные информационные системы
- •3.1. Основные понятия об измерительных информационных системах
- •3.1.1. Поколения измерительных информационных систем
- •3.1.2. Классификация иис
- •3.1.3. Требования, предъявляемые к иис
- •3.1.4. Основные компоненты иис
- •3.2. Виды информационно-измерительных систем
- •3.2.1. Измерительные системы
- •3.2.1.1. Многоканальные ис
- •3.2.1.2. Сканирующие ис
- •3.2.1.3. Ис параллельно-последовательного действия (многоточечные)
- •3.2.2. Системы автоматического контроля
- •3.2.3. Системы технической диагностики
- •3.2.4. Система телеизмерения
- •3.2.5. Перспективы развития иис
- •Контрольные вопросы
- •4. Электрические измерения и приборы
- •4.1. Аналоговые средства измерений
- •4.1.1. Электромеханические приборы
- •4.1.1.1. Приборы магнитоэлектрической системы
- •4.1.1.2. Гальванометры
- •4.1.1.3. Приборы электромагнитной системы
- •4.1.2. Компенсаторы постоянного тока
- •4.1.3. Электронные аналоговые вольтметры
- •4.2. Цифровые электронные вольтметры
- •4.2.1. Цифровой вольтметр с глин
- •4.2.2. Времяимпульсный цифровой вольтметр двойного интегрирования
- •4.3. Измерение параметров элементов электрических цепей
- •4.3.1. Метод вольтметра-амперметра
- •4.3.2. Метод непосредственной оценки
- •4.3.2.1. Электромеханические омметры
- •4.3.2.2. Электронные омметры
- •4.3.3. Компенсационный метод измерения сопротивлений
- •4.3.4. Метод дискретного счета
- •4.4. Электронно-счетный частотомер
- •Контрольные вопросы
- •5. Передающие преобразователи неэлектрических величин
- •5.1. Дифференциально-трансформаторные преобразователи
- •5.2. Передающие преобразователи с магнитной компенсацией
- •5.3. Электросиловые преобразователи
- •5.4. Измерительные тензопреобразователи
- •Контрольные вопросы
- •6. Измерение температур
- •6.1. Практические температурные шкалы
- •Средства измерения температур
- •6.2. Термометры расширения
- •6.2.1. Стеклянные жидкостные термометры
- •Технические электроконтактные термометры
- •6.2.2. Манометрические термометры
- •6.2.2.1. Газовые манометрические термометры
- •6.2.2.2. Жидкостные манометрические термометры
- •6.2.2.3. Конденсационные манометрические термометры
- •6.3. Термоэлектрические термометры
- •6.3.1. Характеристики материалов для термоэлектрических преобразователей
- •6.3.2. Конструкция термоэлектрических термометров
- •6.3.3. Удлиняющие термоэлектродные провода
- •6.4. Термометры сопротивления
- •6.4.1. Медные термометры сопротивления
- •6.4.2. Никелевые термометры сопротивления
- •6.4.3. Платиновые термометры сопротивления
- •6.4.4. Неметаллические термометры сопротивления
- •6.4.5. Устройство термометров сопротивления
- •6.4.6. Способы подключения термометров сопротивления
- •6.4.6.1. Двухпроводная схема подключения
- •6.4.6.2. Трехпроводная схема подключения
- •6.4.6.3. Четырехпроводная схема подключения
- •6.5. Динамическая характеристика термопреобразователей
- •6.6. Промышленные термопреобразователи
- •6.6.1. Преобразователи термоэлектрические тха «Метран-201» и тхк «Метран-202»
- •6.6.2. Термопреобразователи сопротивления медные взрывозащищенные тсм «Метран-253» (50м) и тсм «Метран-254» (100м)
- •6.6.3. Термопреобразователи сопротивления платиновые тсп «Метран-245»; «Метран-246»
- •6.6.4. Термопреобразователи с унифицированным выходным сигналом тхау «Метран-271», тсму «Метран-274», тспу «Метран-276»
- •6.6.5. Термопреобразователи микропроцессорные тхау «Метран-271мп», тсму «Метран-274мп», тспу «Метран-276мп»
- •6.6.6. Интеллектуальные преобразователи температуры «Метран-281», «Метран-286»
- •Контрольные вопросы
- •7. Измерение давления
- •7.1. Классификация манометров
- •7.1.1. По виду измеряемого давления
- •7.1.2. По принципу преобразования измеряемого давления
- •7.2. Деформационные манометры
- •7.2.1. Трубчато-пружинные манометры
- •7.2.2. Электроконтактные манометры
- •7.2.3. Манометры с дтп
- •7.2.4. Манометры с компенсацией магнитных потоков
- •7.2.5. Преобразователи давления с силовой компенсацией
- •7.2.6. Сильфонные манометры и дифманометры
- •7.2.7. Мембранные манометры и дифманометры
- •7.3. Пьезоэлектрические манометры
- •7.4. Манометры с тензопреобразователями
- •7.5. Методика измерения давления и разности давлений
- •Контрольные вопросы
- •8. Измерение уровня
- •8.1. Уровнемеры с визуальным отсчетом
- •8.2. Гидростатические уровнемеры
- •8.3. Поплавковые и буйковые уровнемеры
- •8.4. Емкостные уровнемеры
- •8.5. Индуктивные уровнемеры
- •8.6. Ультразвуковые уровнемеры
- •Контрольные вопросы
- •9. Измерение расхода
- •9.3. Измерение расхода по переменному перепаду давления
- •9.3.1. Расходомеры с сужающими устройствами
- •9.3.2. Измерение расхода по переменному перепаду давления в осредняющей напорной трубке
- •9.4. Расходомеры постоянного перепада
- •9.4.1. Ротаметры
- •9.4.2. Тахометрические расходомеры
- •9.4.3. Электромагнитные расходомеры
- •9.9. Схема расходомера с электромагнитом
- •9.4.4. Ультразвуковые расходомеры
- •9.4.5. Вихревые расходомеры
- •9.4.6. Вихреакустические расходомеры
- •9.12. Схема проточной части расходомера «Метран 300 пр»
- •9.4.7. Массовые кориолисовые расходомеры и плотномеры
- •9.5. Обзор имеющихся расходомеров
- •Контрольные вопросы
- •10. Измерение положения, скорости, ускорения
- •10.2. Фотоэлектрические преобразователи положения
- •10.3. Кодовые датчики положения
- •10.4.3. Импульсные датчики скорости
- •10.5. Инерционные датчики ускорения, скорости, положения
- •Контрольные вопросы
- •11. Метрологическое обеспечение измерений
- •11.1. Передача размера единиц измерения
- •11.2. Регулировка, градуировка и поверка средств измерений
- •11.3. Метрологическое обеспечение средств измерений давления
- •Грузопоршневые манометры
- •Контрольные вопросы
- •Заключение
- •Список литературы
6.4.6.2. Трехпроводная схема подключения
Принцип уменьшения влияния сопротивления соединительных проводников при трехпроводном подключении показан на примере мостовой схемы измерения активного сопротивления.
Четырехплечий измерительный мост показан на рис. 6.19.
Рис. 6.19. Схема одинарного моста
Условие равновесия четырехплечего моста постоянного тока
.
Измеряемое сопротивление считается включенным в первое плечо моста, тогда из условия равновесия R1 определяется
.
Мост приводится в равновесие сопротивлением R3, отношение R2/R4 является масштабным множителем, который выбирается равным 10n, где n целое положительное или отрицательное число, или ноль.
Третье плечо моста называется плечом уравновешивания, а второе и четвертое – плечами отношения, с помощью которых задается предел измерения.
Трехпроводная схема подключения термометра показана на рис. 6.17, б. Соединительные провода от головки термометра идут к измерительной ветви, сравнительной ветви и источнику питания. В симметричных уравновешенных схемах, когда сопротивления измерительной и сравнительной ветвей одинаковы, изменение температуры соединительных проводов не вызывает погрешности, так как сопротивление проводов изменяется на одну и ту же величину. Подгонка сопротивления соединительных проводов осуществляется последовательным измерением попарно соединенных проводов.
Трехпроводная схема включения показана на рис. 6.20, где r1, r2, r3, – сопротивления соединительных проводов.
Найдем условие, при котором сопротивления соединительных проводов не влияют на результат измерения сопротивления R1.
Рис. 6.20. Трехпроводная схема включения измеряемого сопротивления
Для уравновешенного моста справедливо уравнение
,
из которого
.
Соединительные провода выполняются одинаковым сечением, следовательно, r2 = r3 = r, тогда
.
При выполнении условия
влияние изменения сопротивления
соединительных проводов на результат
измерения будет исключено.
Условие равновесия моста выполняется при R1 = R3, откуда следует, что уравновешивание моста достигается регулировкой R3 или введением регулировочного сопротивления в первое плечо моста и выбором его значения так, чтобы оно компенсировало изменение R1. Предпочтение отдают второму способу.
6.4.6.3. Четырехпроводная схема подключения
Радикальным методом борьбы с влиянием проводов соединительной линии является использование четырехпроводного включения терморезистора (рис. 6.17, в). Схема измерения при четырехпроводном включении показана на рис. 6.21.
Рис. 6.21. Четырехпроводная схема включения термометра сопротивления
Через терморезистор протекает ток I0, задаваемый генератором стабильного тока с большим внутренним сопротивлением. Таким образом, сопротивления проводов r1 и r4, а также изменение сопротивления R не влияют на ток I0. Если для измерения напряжения Uвых использовать вольтметр с высоким входным сопротивлением, то в измерительной цепи ток отсутствует и сопротивления проводов r2 и r3 также не влияют на результат измерения. Так обеспечивается практически полное исключение погрешностей, вызванных нестабильностью сопротивлений проводов соединительной линии, а напряжение Uвых определяется простым соотношением Uвых = I0R.