Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Консп лекций Техизмерения и приб 05-04-2012.docx
Скачиваний:
9
Добавлен:
26.09.2019
Размер:
19.49 Mб
Скачать

6.3.1. Характеристики материалов для термоэлектрических преобразователей

Два любых разнородных проводника могут образовать термоэлектрический термометр.

К материалам, используемым для изготовления термоэлектрических термометров, предъявляется целый ряд требований, которые делятся на обязательные и желательные.

Обязательные требования:

  • стабильность градуировочной характеристики;

  • воспроизводимость – для стандартных термометров.

Желательные требования:

  • жаростойкость или окалиностойкость;

  • жаропрочность, т.е. стойкость к механическим нагрузкам при повышенных температурах;

  • химическая стойкость;

  • однозначность;

  • линейность градуировочной характеристики.

Например, могут быть жаропрочные материалы, воспроизводимые с однозначной и линейной градуировочной характеристикой и высоким коэффициентом преобразования, но если градуировочная характеристика этих материалов нестабильна, то измерять таким термометром нельзя.

С другой стороны, материалы, имеющие низкий коэффициент преобразования, нелинейную градуировочную характеристику, но имеющие стабильную характеристику, используются для термоэлектрических термометров.

Межгосударственный стандарт ГОСТ 6616-94 «Преобразователи термоэлектрические. Общие технические условия» введен в действие в качестве государственного стандарта Российской Федерации с 1 января 1999 г. В стандарте нормализованы требования к двенадцати типам ТП, некоторые из них представлены в табл. 6.6.

Таблица 6.6. Основные типы термоэлектрических преобразователей (ГОСТ-6616-94)

Тип термопары

Обозначение МЭК

Букв. обозн. НСХ

Химический состав термоэлектродов, мас. %

Пределы измеряемых температур, °С

положительный

отрицательный

нижний

верхний

кратковременно

Медь – константановая ТМКн

Cu–CuNi

Т

Cu

Cu+

(40-45) Ni+ l,0Mn+0,7Fe

–200

350

400

Хромель –копелевая ТХК

L

Ni+ 9,5 Cr

Cu+

(42-44) Ni+ +0,5Mn+0,lFe

–200

600

800

Хромель – константановая ТХКн

NiCr–CuNi

Е

Ni+ 9,5 Cr

Cu+

(40-45) Ni+ +l,0Mn+0,7Fe

–200

700

900

Железо – константановая ТЖК

Fe-CuNi

J

Fe

Cu+

(40-45) Ni+ +l,0Mn+0,7Fe

–200

750

900

Хромель –алюмелевая ТХА

NiCr-NiAl

К

Ni+ 9,5 Cr

Ni+lSi+

+2Al+2,5Mn

–200

1200

1300

Нихросил – нисиловая ТНН

NiCrSi –NiSi

N

Ni+14,2Cr+

1,4Si

Ni+4,4Si+

+0,lMg

–270

1200

1300

Платинородий – платиновые ТПП13, ТПП10

R

S

Pt+13Rh Pt+l0Rh

Pt

Pt

0

1300

1600

Платинородий – платинородиевая ТПР

В

Pt+30Rh

Pt+6Rh

600

1700

Вольфрамрений – вольфрамрениевые ТВР

(А-1; А-2; А-3)

W+5% Re

W+20% Re

0

2200

2500

Хромель-копелевые (ТХК) и хромель-алюмелевые (ТХА) – наиболее распространенные в России термоэлектрические преобразователи.

Преобразователь термоэлектрический хромель-копелевый (типа L) обладает наибольшей дифференциальной чувствительностью из всех промышленных термопар (около 70÷90 мкВ/С), применяется для точных измерений температуры, а также для измерений малых температурных разностей. Термопреобразователь обладает высокой термоэлектрической стабильностью при нагревах до 600 °С, обусловленной тем, что изменение термоЭДС хромелевого и копелевого термоэлектродов направлены в одну и ту же сторону и компенсируют друг друга. Технический ресурс термопар может составлять несколько десятков тысяч часов. Так, у термопар с диаметрами термоэлектродов от 0,5 до 3,2 мм при их выдержке в течение 10000 час. при 400…600 °С максимальные изменения градуировки составили 0,5…1 °С. К недостаткам ТХК можно отнести относительно высокую чувствительность к деформации.

Для термометров с термоэлектродами диаметром менее 1 мм верхний предел длительного применения менее 600 °C и составляет, например, для термоэлектродов диаметром 0,2¸0,3 мм только 400 °C. Верхний предел применения определяется стабильностью характеристик копелевого термоэлектрода.

Преобразователь термоэлектрический хромель-алюмелевый (тип К) является самым распространенным термопреобразователем в промышленности и научных исследованиях. Термопреобразователь предназначен для длительного измерения температуры до 1100 °С в окислительных и инертных средах. Термопреобразователь широко используется во всех отраслях промышленности в печах, нагревательных устройствах, энергосиловом оборудовании. Номинальная статическая характеристика ТХА близка к линейной, дифференциальная термоЭДС около 40 мкВ/°С во всем диапазоне измеряемых температур. Главное преимущество ТХА, по сравнению с другими термопарами из неблагородных металлов, состоит в значительно большей стойкости к окислению при высоких температурах. Технический ресурс термопар при температурах менее 850 °C ограничивается только дрейфом термоЭДС, т.к. жаростойкость хромеля и алюмеля позволяет использовать их при этих температурах десятки тысяч часов.

Термоэлектрод из никель-алюминиевой проволоки менее устойчив к окислению, чем никельхромовый. Верхние пределы применения зависят от диаметра термоэлектродов. Для термоэлектродов диаметром 3¸5 мм верхний предел длительного применения никельхром-никельалюминиевых термометров составляет 1000 °C, а для диаметра 0,2¸0,3 мм – не более 600 °C. Термометры типа К обладают самой высокой влагостойкостью.

К недостаткам ТХА относятся присущие ей два вида нестабильности термоЭДС: обратимая циклическая нестабильность и необратимая нестабильность, постепенно накапливающаяся со временем.

Учитывая вышеизложенное, применять один и тот же преобразователь ТХА во всем диапазоне измеряемых температур нецелесообразно, т.к. это ухудшает точность измерений. Термопарой, которую используют для точного измерения температур до 500 °C, не следует измерять более высокие температуры, и, наоборот, термопарой, использовавшейся при температурах выше 900 °C, нецелесообразно измерять температуры 300÷600 °C.

Все термоэлектрические термометры из неблагородных материалов хорошо стоят в инертной и восстановительной атмосфере, в окислительной атмосфере их срок службы ограничен.

Кроме того, термометры хромель-копелевые и хромель-алюме­левые отличаются достаточно высокой стабильностью и линейностью характеристики, в том числе при высокой интенсивности ионизирующих излучений. Они все же способны работать в окислительной среде, поскольку образуемая при нагреве тонкая защитная пленка препятствует проникновению кислорода внутрь металла.

Термопреобразователи вольфрамрений-вольфрамрениевые (ТВР) имеют самый высокий предел длительного применения до 2200 °С, но только в неокислительных средах, т.к. на воздухе уже при температуре 600 °С происходит очень быстрое окисление и разрушение термоэлектродов. Термопара устойчива в аргоне, гелии, сухом водороде и азоте, а также в вакууме. Основной недостаток – плохая воспроизводимость термоЭДС, вынуждающая группировать термоэлектродные пары по группам с номинальными статическими характеристиками А-1, А-2, А-3.

Термопреобразователи платинородий-платиновые и платинородий-платинородиевые (ТПП и ТПР) чаще всего используются в металлургическом производстве и при термообработке в диапазоне 1000÷1600 °С.

Модификация ТПП13 типа R широко применяется за рубежем. Термопары ТПП10 типа S используются также в качестве эталонных средств. Градуировочная характеристика термометров ТПП типа S не совпадает с градуировочной характеристикой ТПП типа R.

По совокупности свойств платина и платинородиевые сплавы являются уникальными материалами для термопар. Их основное свойство – хорошее сопротивление газовой коррозии, особенно на воздухе при высоких температурах. Указанное свойство в сочетании с высокой температурой плавления и достаточно большой термоЭДС, хорошей совместимостью со многими изолирующими и защитными материалами, а также с хорошей технологичностью и воспроизводимостью метрологических характеристик делает их незаменимыми при изготовлении электродов термопар для измерения высоких температур в окислительных средах. Эти сплавы устойчивы в аргоне и гелии, не растворяют азот и водород, не образуют нитридов и гидридов. Верхний температурный предел длительного применения термопары ТПП10 равен 1300 °С.

При температурах выше 1400 °С используется термопара ТПР с меньшей дифференциальной чувствительностью, но с пределом рабочих температур до 1600 °С (кратковременно до 1800 °С). Эта термопара механически более прочна, менее склонна к росту зерна и охрупчиванию, менее чувствительна к загрязнению. Кроме того, малая чувствительность термопары в диапазоне 0…100 °С делает возможным ее применение с медными удлинительными проводами и не требует термостатирования свободных концов, например, если температура свободных концов 70 °C и поправка на нее не вводится, то при температуре рабочего спая 1600 °C это вызовет погрешность около 2,1 °C. Градуировочная характеристика термометров типа В не совпадает с градуировочной характеристикой прежних моделей типа ПР.

Термометры ТПП и ТПР сохраняют стабильность градуировочной характеристики в окислительной и нейтральной средах. В восстановительной атмосфере эти термометры работать не могут, так как происходит существенное изменение термоЭДС термометра. Так же неблагоприятно воздействует на термометры контакт с углеродом, парами металлов, соединениями углерода и кремния, а также рядом других материалов, загрязняющих термоэлектроды.

Медь – константановые ТМКн типа Т и близкие к ним медь – копелевые и медь – медноникелевые термоэлектрические термометры применяются главным образом для измерения низких температур в промышленности и лабораторной практике. Применение этих термометров для температур менее 200 °C осложняется существенным уменьшением коэффициента преобразования с уменьшением температуры. При температурах свыше 400 °C начинается интенсивное окисление меди, что ограничивает применение термометров этих типов.

Железо-константановые типа J и близкие к ним железо-медно­никелевые термоэлектрические термометры применяются в широком диапазоне температур от минус 200 до плюс 700 °C, а кратковременно до 900 °C. Они имеют достаточно большой коэффициент преобразования (около 55 мкВ/°C). Верхний предел измерения ограничен окислением железа и медноникелевого сплава.

Кроме стандартных термоэлектрических термометров находят применение в особых условиях нестандартные термоэлектрические термометры, которые либо не отвечают требованиям воспроизводимости, либо не имеют достаточно стабильную градуировочную характеристику. К ним относятся высокотемпературные термометры:

  • дисилицид молибдена – дисилицид вольфрама (MoSi2 – WSi2) для измерения температур агрессивных газовых сред и некоторых расплавов в интервале температур до 1700 °C;

  • углерод – борид циркония (С – ZrB2) для измерения температур жидких металлов до 1800 °C;

  • углерод – карбид титана (С – TiC) для измерения неокислительных газовых сред до 2500 °C;

  • карбид ниобия – карбид циркония (NbC – ZrC) для измерения в восстановительной и инертной среде или в вакууме до 3000 °C.

Для измерения низких температур (до минуса 270 °C) в промышленных установках применяют золотожелезо-никельхромовую (AuFe – NiCr) термопару, которая практически не изменяет своего коэффициента преобразования в интервале температур (минус 200÷270 °C).

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.