
- •Технические измерения и приборы
- •Введение
- •Измеряемые и регулируемые величины
- •1. Государственная система приборов
- •1.1. Основные понятия и определения гсп
- •1.2. Принципы построения гсп
- •1.3. Классификация средств измерения и автоматизации гсп
- •1.3.1. Функциональные группы изделий гсп
- •1.3.2. Примеры агрегатных комплексов
- •1.4. Основные ветви системы
- •Контрольные вопросы
- •2. Общие характеристики средств измерения
- •2.1. Классификация средств измерения
- •2.1.1. Классификация компонентов измерительных устройств
- •2.2. Типовые структурные схемы измерительных устройств
- •2.2.1. Структурные схемы средств измерения неэлектрических величин
- •2.2.2. Структурные схемы измерительных систем
- •2.3. Статические характеристики и параметры измерительных устройств
- •2.4. Динамические характеристики измерительных устройств
- •2.5. Погрешности средств измерений
- •2.6. Нормирование метрологических характеристик средств измерений
- •2.6.1. Нормирование метрологических характеристик измерительных устройств
- •2.6.2. Нормирование метрологических характеристик измерительных систем
- •Контрольные вопросы
- •3. Измерительные информационные системы
- •3.1. Основные понятия об измерительных информационных системах
- •3.1.1. Поколения измерительных информационных систем
- •3.1.2. Классификация иис
- •3.1.3. Требования, предъявляемые к иис
- •3.1.4. Основные компоненты иис
- •3.2. Виды информационно-измерительных систем
- •3.2.1. Измерительные системы
- •3.2.1.1. Многоканальные ис
- •3.2.1.2. Сканирующие ис
- •3.2.1.3. Ис параллельно-последовательного действия (многоточечные)
- •3.2.2. Системы автоматического контроля
- •3.2.3. Системы технической диагностики
- •3.2.4. Система телеизмерения
- •3.2.5. Перспективы развития иис
- •Контрольные вопросы
- •4. Электрические измерения и приборы
- •4.1. Аналоговые средства измерений
- •4.1.1. Электромеханические приборы
- •4.1.1.1. Приборы магнитоэлектрической системы
- •4.1.1.2. Гальванометры
- •4.1.1.3. Приборы электромагнитной системы
- •4.1.2. Компенсаторы постоянного тока
- •4.1.3. Электронные аналоговые вольтметры
- •4.2. Цифровые электронные вольтметры
- •4.2.1. Цифровой вольтметр с глин
- •4.2.2. Времяимпульсный цифровой вольтметр двойного интегрирования
- •4.3. Измерение параметров элементов электрических цепей
- •4.3.1. Метод вольтметра-амперметра
- •4.3.2. Метод непосредственной оценки
- •4.3.2.1. Электромеханические омметры
- •4.3.2.2. Электронные омметры
- •4.3.3. Компенсационный метод измерения сопротивлений
- •4.3.4. Метод дискретного счета
- •4.4. Электронно-счетный частотомер
- •Контрольные вопросы
- •5. Передающие преобразователи неэлектрических величин
- •5.1. Дифференциально-трансформаторные преобразователи
- •5.2. Передающие преобразователи с магнитной компенсацией
- •5.3. Электросиловые преобразователи
- •5.4. Измерительные тензопреобразователи
- •Контрольные вопросы
- •6. Измерение температур
- •6.1. Практические температурные шкалы
- •Средства измерения температур
- •6.2. Термометры расширения
- •6.2.1. Стеклянные жидкостные термометры
- •Технические электроконтактные термометры
- •6.2.2. Манометрические термометры
- •6.2.2.1. Газовые манометрические термометры
- •6.2.2.2. Жидкостные манометрические термометры
- •6.2.2.3. Конденсационные манометрические термометры
- •6.3. Термоэлектрические термометры
- •6.3.1. Характеристики материалов для термоэлектрических преобразователей
- •6.3.2. Конструкция термоэлектрических термометров
- •6.3.3. Удлиняющие термоэлектродные провода
- •6.4. Термометры сопротивления
- •6.4.1. Медные термометры сопротивления
- •6.4.2. Никелевые термометры сопротивления
- •6.4.3. Платиновые термометры сопротивления
- •6.4.4. Неметаллические термометры сопротивления
- •6.4.5. Устройство термометров сопротивления
- •6.4.6. Способы подключения термометров сопротивления
- •6.4.6.1. Двухпроводная схема подключения
- •6.4.6.2. Трехпроводная схема подключения
- •6.4.6.3. Четырехпроводная схема подключения
- •6.5. Динамическая характеристика термопреобразователей
- •6.6. Промышленные термопреобразователи
- •6.6.1. Преобразователи термоэлектрические тха «Метран-201» и тхк «Метран-202»
- •6.6.2. Термопреобразователи сопротивления медные взрывозащищенные тсм «Метран-253» (50м) и тсм «Метран-254» (100м)
- •6.6.3. Термопреобразователи сопротивления платиновые тсп «Метран-245»; «Метран-246»
- •6.6.4. Термопреобразователи с унифицированным выходным сигналом тхау «Метран-271», тсму «Метран-274», тспу «Метран-276»
- •6.6.5. Термопреобразователи микропроцессорные тхау «Метран-271мп», тсму «Метран-274мп», тспу «Метран-276мп»
- •6.6.6. Интеллектуальные преобразователи температуры «Метран-281», «Метран-286»
- •Контрольные вопросы
- •7. Измерение давления
- •7.1. Классификация манометров
- •7.1.1. По виду измеряемого давления
- •7.1.2. По принципу преобразования измеряемого давления
- •7.2. Деформационные манометры
- •7.2.1. Трубчато-пружинные манометры
- •7.2.2. Электроконтактные манометры
- •7.2.3. Манометры с дтп
- •7.2.4. Манометры с компенсацией магнитных потоков
- •7.2.5. Преобразователи давления с силовой компенсацией
- •7.2.6. Сильфонные манометры и дифманометры
- •7.2.7. Мембранные манометры и дифманометры
- •7.3. Пьезоэлектрические манометры
- •7.4. Манометры с тензопреобразователями
- •7.5. Методика измерения давления и разности давлений
- •Контрольные вопросы
- •8. Измерение уровня
- •8.1. Уровнемеры с визуальным отсчетом
- •8.2. Гидростатические уровнемеры
- •8.3. Поплавковые и буйковые уровнемеры
- •8.4. Емкостные уровнемеры
- •8.5. Индуктивные уровнемеры
- •8.6. Ультразвуковые уровнемеры
- •Контрольные вопросы
- •9. Измерение расхода
- •9.3. Измерение расхода по переменному перепаду давления
- •9.3.1. Расходомеры с сужающими устройствами
- •9.3.2. Измерение расхода по переменному перепаду давления в осредняющей напорной трубке
- •9.4. Расходомеры постоянного перепада
- •9.4.1. Ротаметры
- •9.4.2. Тахометрические расходомеры
- •9.4.3. Электромагнитные расходомеры
- •9.9. Схема расходомера с электромагнитом
- •9.4.4. Ультразвуковые расходомеры
- •9.4.5. Вихревые расходомеры
- •9.4.6. Вихреакустические расходомеры
- •9.12. Схема проточной части расходомера «Метран 300 пр»
- •9.4.7. Массовые кориолисовые расходомеры и плотномеры
- •9.5. Обзор имеющихся расходомеров
- •Контрольные вопросы
- •10. Измерение положения, скорости, ускорения
- •10.2. Фотоэлектрические преобразователи положения
- •10.3. Кодовые датчики положения
- •10.4.3. Импульсные датчики скорости
- •10.5. Инерционные датчики ускорения, скорости, положения
- •Контрольные вопросы
- •11. Метрологическое обеспечение измерений
- •11.1. Передача размера единиц измерения
- •11.2. Регулировка, градуировка и поверка средств измерений
- •11.3. Метрологическое обеспечение средств измерений давления
- •Грузопоршневые манометры
- •Контрольные вопросы
- •Заключение
- •Список литературы
4.4. Электронно-счетный частотомер
Принцип действия электронно-счетного частотомера основан на измерении частоты в соответствии с ее определением, т.е. на счете числа импульсов за интервал времени. Переменное напряжение, частоту fx которого необходимо измерить, преобразуют в последовательность коротких импульсов с частотой следования, равной fx. Если сосчитать число импульсов N за интервал времени Tсч, то частота
.
Структурная схема электронно-счетного частотомера изображена на рис. 4.34. Сигнал частоты fx поступает на усилитель-формирователь импульсов УФ, который преобразует синусоидальное напряжение измеряемой частоты в последовательность однополярных импульсов.
Рис. 4.34. Структурная схема электронно-счетного частотомера
Частота следования этих импульсов равна измеряемой частоте. Импульсы поступают на вход 1 временного селектора (ВС). На вход 2 селектора поступает импульс Tсч строго определенной длительности. Длительность этого импульса задается генератором высокой частоты (ГВЧ) с кварцевой стабилизацией и делителем частоты (ДЧ) с коэффициентом деления 10n. Частота генератора с кварцевой стабилизацией fкв обычно равна 1 или 5 МГц, и, следовательно, период колебаний Tкв равен 1 или 0,2 мкс. При такой длительности времени счета измерять частоты, равные или меньшие fкв, невозможно. Поэтому после кварцевого генератора включают декадные делители частоты, на выходах которых образуются частоты в 10n (n = 1, 2, 3,…) раз ниже частоты генератора. Измеряемая частота при этом определяется по формуле
fx = N10-n fкв.
Импульс длительностью Tсч = 10n/ fкв формируется в блоке управления (БУ). Импульсы измеряемой частоты поступают на электронный счетчик импульсов (Сч) лишь тогда, когда ко входу 2 селектора приложен импульс счета длительностью Tсч. С выхода счетчика информация о числе импульсов N, его заполнивших, в виде двоичного кода подается через дешифратор на цифровое отсчетное устройство, на котором в цифровом виде фиксируется результат измерения в единицах частоты. Измерение производится повторяющимися циклами, задаваемыми блоком управления.
Одновременно с воздействием на временной селектор управляющее устройство выдает импульсы для сброса показаний цифрового индикатора и обнуления электронного счетчика. В управляющем устройстве предусмотрена блокировка временного селектора на некоторый интервал времени, в течение которого на табло сохраняются показания для считывания оператором. Этот интервал времени называется временем индикации и может регулироваться в пределах нескольких секунд. В частотомере предусмотрены автоматический и ручной режимы измерения. В автоматическом режиме счет импульсов повторяется каждый раз по окончании установленного времени индикации. В режиме ручного управления счет выполняется один раз при нажатии на кнопку, время индикации не ограничивается.
Относительная погрешность электронно-счетного частотомера при измерении частоты определяется выражением
,
где 0 – относительная погрешность установки частоты кварцевого генератора; нест – относительная погрешность, вызванная нестабильностью частоты кварцевого генератора в условиях эксплуатации; 1/fxTсч – относительная погрешность, обусловленная некратностью периодов Tx и времени счета Tсч.
Последняя составляющая погрешности оценивается, исходя из того, что при некратности периодов Tx и Tсч подсчет числа импульсов за время счета может быть произведен с точностью ±1 импульс. Но тогда 1/N = 1/fxTсч.
У современных электронно-счетных частотомеров величины 0 и нест составляют примерно 10–8 и менее, поэтому при технических измерениях могут не учитываться.
Составляющая погрешности 1/fxTсч зависит от измеряемой частоты и времени счета. В табл. 4.2 приведены значения этой составляющей в зависимости от времени счета для различных частот.
Таблица 4.2. Зависимость погрешности от времени счета
Время измерения, Tсч, с |
Погрешность 1/fxTсч |
||
0,1 Гц |
100 Гц |
100 кГц |
|
10–2 |
103 |
1 |
10–3 |
10–1 |
102 |
10–1 |
10–4 |
1 |
10 |
10–2 |
10–5 |
Из этой таблицы видно, что для измерения низких частот погрешность измерения недопустимо велика.
Для того чтобы обеспечить приемлемую погрешность измерения низких частот, переходят к измерению периода с последующим пересчетом в частоту. Принцип измерения периода аналогичен рассмотренному с той разницей, что временной селектор открывается импульсом, формируемым из напряжения, период Тx которого необходимо измерить, а длительность этого периода определяется подсчетом импульсов fсч, получаемых от высокостабильного генератора. Если на счетчик прошло N импульсов с частотой следования fсч, то измеряемый период
,
или частота
.
Составляющая относительной погрешности измерения периода при ошибке в подсчете числа импульсов за время счета ±1 импульс будет равна fx/f0.