Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по нейрофизиологии! (2).docx
Скачиваний:
24
Добавлен:
26.09.2019
Размер:
409.69 Кб
Скачать

4.Функции нейроглия и гематоэнцефалический барьер.

Функции нейроглии в тетрадке.

Организм человека и высших животных обладает рядом специ­фических физиологических систем, обеспечивающих приспособление (адаптацию) к постоянно изменяющимся условиям существования. Этот процесс тесно связан с необходимостью обязательного сохра­нения постоянства существенных физиологических параметров, внутренней среды организма, физико-химического состава тканевой жидкости межклеточного пространства.

Среди гомеостатических приспособительных механизмов, при­званных защитить органы и ткани от чужеродных веществ и регули­ровать постоянство состава тканевой межклеточной жидкости, веду­щее место занимает гематоэнцефалический барьер. По определению Л. С. Штерн, гематоэнцефалический барьер объединяет совокупность физиологических механизмов и соответствующих ана­томических образований в центральной нервной системе, участвую­щих в регулировании состава цереброспинальной жидкости (ЦСЖ).

В представлениях о гематоэнцефалическом барьере в качестве основных положений подчеркивается следующее: 1) проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр — нервная клетка; 2) гематоэнцефалический барьер является в большей степени не анатомическим образованием, а функциональным понятием, ха­рактеризующим определенный физиологический механизм. Как лю­бой существующий в организме физиологический механизм, гема­тоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем; 3) среди управляющих гематоэнцефалическим барьером факторов ведущим является уровень деятель­ности и метаболизма нервной ткани.

Гематоэнцефалический барьер регулирует проникновение из кро­ви в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, препятствует поступлению в мозг чужеродных веществ, микроорганиз­мов, токсинов.

Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональ­ному состоянию организма, обусловливает динамику поступления в нервные клетки мозга физиологически активных веществ.

Проницаемость гематоэнцефалического барьера зависит от фун­кционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.

Функциональная система гематоэнцефалического барьера представляется важным компонентом нейрогуморальной регуляции. В частности, через гематоэнцефалический барьер реализуется прин­цип обратной химической связи в организме. Именно таким образом осуществляется механизм гомеостатической регуляции состава внут­ренней среды организма.

5. Ионный состав внутриклеточной и среды межклеточного вещества и мембранный потенциал.

Внутриклеточная жидкость отделена от внеклеточной цитоплазматической мембраной, высокопроницаемой для воды и практически непроницаемой для большинства электролитов. Внутриклеточная жидкость в отличие от внеклеточной содержит лишь небольшое количество ионов натрия и хлора, а ионы кальция в ней практически отсутствуют. Внутри клетки, напротив, содержится очень большое количество ионов калия, а также умеренное число ионов магния и сульфатов; концентрация всех перечисленных веществ вне клетки низка. Кроме того, в клетках содержится большое количество белка, в 4 раза превышающее его содержание в плазме.

В норме, когда клетка готова к работе, у неё уже есть электрический заряд на поверхности мембраны. Он называется мембранный потенциал покоя.

Потенциал покоя - это разность электрических потенциалов между внутренней и наружной сторонами мембраны, когда клетка находится в состоянии физиологического покоя. Его средняя величина составляет -70 мВ (милливольт).

"Потенциал" - это возможность, он сродни понятию "потенция". Электрический потенциал мембраны - это её возможности по перемещению электрических зарядов, положительных или отрицательных. В роли зарядов выступают заряженные химические частицы - ионы натрия и калия, а также кальция и хлора. Из них только ионы хлора заряжены отрицательно (-), а остальные - положительно (+).

Таким образом, имея электрический потенциал, мембрана может перемещать в клетку или из клетки указанные выше заряженные ионы.

Важно понимать, что в нервной системе электрические заряды создаются не электронами, как в металлических проводах, а ионами - химическими частицами, имеющими электрический заряд. Электрический ток в организме и его клетках - это поток ионов, а не электронов, как в проводах. Обратите также внимание на то, что заряд мембраны измеряется изнутри клетки, а не снаружи.

Если говорить уж совсем примитивно просто, то получается, что снаружи вокруг клетки будут преобладать "плюсики", т.е. положительно заряженные ионы, а внутри - "минусики", т.е. отрицательно заряженные ионы. Можно сказать, что внутри клетка электроотрицательна. И теперь нам всего лишь надо объяснить, как это так получилось. Хотя, конечно, неприятно сознавать, что все наши клетки - отрицательные "персонажи". ((

Сущность

Сущность потенциала покоя - это преобладание на внутренней стороне мембраны отрицательных электрических зарядов в виде анионов и недостаток положительных электрических зарядов в виде катионов, которые сосредотачиваются на её наружной стороне, а не на внутренней.

Внутри клетки - "отрицательность", а снаружи - "положительность".

Такое положение вещей достигается с помощью трёх явлений: (1) поведения мембраны , (2) поведения положительных ионов калия и натрия и (3) соотношения химической и электрической силы.

1. Поведение мембраны

В поведении мембраны для потенциала покоя важны три процесса:

1) Обмен внутренних ионов натрия на наружные ионы калия. Обменом занимаются специальные транспортные структуры мембраны: ионные насосы-обменники. Таким способом мембрана перенасыщает клетку калием, но обедняет натрием.

2) Открытые калиевые ионные каналы. Через них калий может как заходить в клетку, так и выходить из неё. Он выходит в основном.

3) Закрытые натриевые ионные каналы. Из-за этого натрий, выведенный из клетки насосми-обменниками, не может вернуться в неё обратно. Натриевые каналы открываются только при особых условиях - и тогда потенциал покоя нарушается и смещается в сторону нуля (это называется деполяризацией мембраны, т.е. уменьшением полярности).

2. Поведение ионов калия и натрия

Ионы калия и натрия по-разному перемещаются через мембрану:

1) Через ионные насосы-обменники калий затаскивается в клетку, а натрий выводится из клетки.

2) Через постоянно открытые калиевые каналы калий выходит из клетки, но может и возвращаться в неё обратно через них же.

3) Натрий "хочет" войти в клетку, но "не может", т.к. каналы для него закрыты.

3. Соотношение химической и электрической силы

По отношению к ионам калия между химической и электрической силой устанавливается равновесие на уровне - 70 мВ.

1) Химическая сила выталкивает калий из клетки, но стремится затянуть в неё натрий.

2) Электрическая сила стремится затянуть в клетку положительно заряженные ионы (как натрий, так и калий).

Формирование потенциала покоя

Попробую рассказать коротко, откуда берётся мембранный потенциал покоя в нервных клетках - нейронах. Ведь, как всем теперь известно, наши клетки только снаружи положительные, а внутри они весьма отрицательные, и в них существует избыток отрицательных частиц - анионов и недостаток положительных частиц - катионов.

И вот тут исследователя и студента поджидает одна из логических ловушек: внутренняя электроотрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а наоборот - из-за потери некоторого количества положительных частиц (катионов).

И поэтому сущность нашего рассказа будет заключаться не в том, что мы объясним, откуда берутся отрицательные частицы в клетке, а в том, что мы объясним, каким образом в нейронах получается дефицит положительно заряженных ионов - катионов.

Куда же деваются из клетки положительно заряженные частицы? Напомню, что это ионы натрия - Na+ и калия - K+.

Натрий-калиевый насос

А всё дело заключается в том, что в мембране нервной клетки постоянно работают насосы-обменники, образованные специальными белками, встроенными в мембрану. Что они делают? Они меняют "собственный" натрий клетки на наружный "чужой" калий. Из-за этого в клетке оказывается в конце концов недостаток натрия, который ушёл на обмен. И в то же время клетка переполняется ионами калия, который в неё натащили эти молекулярные насосы.

Чтобы легче было запомнить, образно можно сказать так: "Клетка любит калий!" (Хотя об истинной любви здесь не может идти и речи!) Поэтому она и затаскивает калий в себя, несмотря на то, что его и так полно. Поэтому она невыгодно обменивает его на натрий, отдавая 3 иона натрия за 2 иона калия. Поэтому она тратит на этот обмен энергию АТФ. И как тратит! До 70% всех энергозатрат нейрона может уходить на работу натрий-калиевых насосов. Вот что делает любовь, пусть даже не настоящая!

Кстати, интересно, что клетка не рождается с потенциалом покоя в готовом виде. Например, при дифференцировке и слиянии миобластов потенциал их мембраны изменяется от -10 до -70 mV, т.е. их мембрана становится более электроотрицательной, она поляризуется в процессе дифференцировки . А в экспериментах на мультипотентных мезенхимальных стромальных клетках (ММСК) костного мозга человека искусственная деполяризация ингибировала дифференцировку клеток

Образно говоря, можно выразиться так:

Создавая потенциал покоя, клетка "заряжается любовью".

Это любовь к двум вещам:

1) любовь клетки к калию,

2) любовь калия к свободе.

Как ни странно, но результат этих двух видов любви - пустота!

Именно она, пустота, создаёт в клетке отрицательный электрический заряд - потенциал покоя. Точнее, отрицательный потенциал создают пустые места, оставшиеся от убежавшего из клетки калия.

Итак, результат деятельности мембранных ионных насосов-обменников таков:

Натрий-калиевый ионный насос-обменник создаёт три потенциала (возможности):

1. Электрический потенциал - возможность затягивать внутрь клетки положительно заряженные частицы (ионы).

2. Ионный натриевый потенциал - возможность затягивать внутрь клетки ионы натрия (и именно натрия, а не какие-нибудь другие).

3. Ионный калиевый потенциал - возможновть выталкивать из клетки ионы калия (и именно калия, а не какие-нибудь другие).

1. Дефицит натрия (Na+) в клетке.

2. Избыток калия (K+) в клетке.

Можно сказать так: ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.

Именно из-за получившегося дефицита натрия в клетку теперь "полезет" этот самый натрий снаружи. Так всегда ведут себя вещества: они стремятся выравнять свою концентрацию во всём объёме раствора.

И в то же время в клетке получился избыток ионов калия по сравнению с наружной средой. Потому что насосы мембраны накачали его в клетку. И он стремится уравнять свою концентрацию внутри и снаружи, и поэтому стремится выйти из клетки.

Тут ещё важно понять, что ионы натрия и калия как бы "не замечают" друг друга, они реагируют только "на самих себя". Т.е. натрий реагирует на концентрацию натрия же, но "не обращает внимания" на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и "не замечает" натрий. Получается, что для понимания поведения ионов в клетке надо по-отдельности сравнивать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно - концентрацию калия внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это часто делается в учебниках.

По закону выравнивания концентраций, который действует в растворах, натрий "хочет" снаружи войти в клетку. Но не может, так как мембрана в обычном состоянии плохо его пропускает. Его заходит немножко и клетка его опять тут же обменивает на наружный калий. Поэтому натрий в нейронах всегда в дефиците.

А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Так вот он и выходит наружу через особые белковые дырочки в мембране (ионные каналы).

Анали

От химического - к электрическому

А теперь - самое главное, следите за излагаемой мыслью! Мы должны перейти от движения химических частиц к движению электрических зарядов.

Калий заряжен положительным зарядом, и поэтому он, когда выходит из клетки, выносит из неё не только себя, но и "плюсики" (положительные заряды). На их месте в клетке остаются "минусы" (отрицательные заряды). Это и есть мембранный потенциал покоя!

Мембранный потенциал покоя - это дефицит положительных зарядов внутри клетки, образовавшийся за счёт утечки из клетки положительных ионов калия.

Заключение

Составные части потенциала покоя

Потенциал покоя - отрицательный со стороны клетки и состоит как бы из двух частей.

1. Первая часть - это примерно -10 милливольт, которые получаются от неравносторонней работы мембранного насоса-обменника (ведь он больше выкачивает "плюсиков" с натрием, чем закачивает обратно с калием).

2. Вторая часть - это утекающий всё время из клетки калий, утаскивающий положительные заряды из клетки. Он дает большую часть мембранного потенциала, доводя его до -70 милливольт.

Калий перестанет выходить из клетки (точнее, его вход и выход сравняются) только при уровне электроотрицательности клетки в -90 милливольт. Но этому мешает постоянно подтекающий в клетку натрий, который тащит с собой свои положительные заряды. И в клетке поддерживается равновесное состояние на уровне -70 милливольт.

Так что всё дело в натрий-калиевом мембранном насосе-обменнике и последующем вытекании из клетки "лишнего" калия. За счёт потери положительных зарядов при этом вытекании внутри клетки нарастает электроотрицательность. Она-то и есть "мембранный потенциал покоя". Он измеряется внутри клетки и составляет обычно -70 мВ.

Выводы

Мембранный потенциал покоя образуется за счёт двух процессов:

1. Работа калий-натриевого насоса мембраны.

Новая гипотеза механизма работы Na,K-АТФазы рассматривается здесь: Механизм натрий-калиевого насоса

Работа калий-натриевого насоса, в свою очередь, имеет 2 следствия:

1.1. Непосредственное электрогенное (порождающее электрические явления) действие ионного насоса-обменника. Это создание небольшой электроотрицательности внутри клетки (-10 мВ).

Виноват в этом неравный обмен натрия на калий. Натрия выбрасывается из клетки больше, чем поступает в обмен калия. А вместе с натрием удаляется и больше "плюсиков" (положительных зарядов), чем возвращается вместе с калием. Возникает небольшой дефицит положительных зарядов. Мембрана изнутри заряжается отрицательно (примерно -10 мВ).

1.2. Создание предпосылок для возникновения большой электроотрицательности.

Эти предпосылки - неравная концентрация ионов калия внутри и снаружи клетки. Лишний калий готов выходить из клетки и выносить из неё положительные заряды. Об этом мы скажем сейчас ниже.

2. Утечка ионов калия из клетки.

Из зоны повышенной концентрации внутри клетки ионы калия выходят в зону пониженной концентрации наружу, вынося заодно положительные электрические заряды. Возникает сильный дефицит положительных зарядов внутри клетки. В итоге мембрана дополнительно заряжается изнутри отрицательно (до -70 мВ).

Финал

Итак:

Калий-натриевый насос создает предпосылки для возникновения потенциала покоя. Это - разность в концентрации ионов между внутренней и наружной средой клетки. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка клетки выравнять концентрацию ионов по калию приводит к потере калия, потере положительных зарядов и порождает электроотрицательность внутри клетки. Эта электроотрицательность составляет большую часть потенциала покоя. Меньшую его часть составляет непосредственная электрогенность ионного насоса, т.е. преобладающие потери натрия при его обмене на калий.