Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biokhimia (1).doc
Скачиваний:
17
Добавлен:
25.09.2019
Размер:
3.58 Mб
Скачать

2. Лактоза и ее св-ва

Лактоза, или млочный сахар (бэта-D-галактопиранозил-(1-->4) – альфа-D-глюкопираноза), - основной дисахарид молока, сожержит свободный полуацетальный гидроксид при С-1 и обладает восстанавливающими св-вами. Олигосахариды группы лактозы представляют собой продукты гликозилирования мол-лы лактозы остатками моносахаридов (L-фукозы, N-ацетил-D-глюкозамина, D-галактозы, N-ацетилнейраминовой к-ты), т.е. трисахариды.

Одна из ф-ций олигосахаридов группы лактозы - формирование бактериальной флоры в кишечнике новорожденных, необходимой для нормального пищеварения.

  1. Лигазы

  1. тРНК

  1. Роль тРнк

  2. Молекулы транспортных РНК имеют небольшие размеры. Они состоят всего из 75-80 нуклеотидных остатков, и

  3. имеют молекулярную массу порядка 25 тыс. дальтон.

  4. Особенностью строения тРНК является большое количество здесь минорных нуклеотидов. Их количество составляет

  5. от 17 до 19%. Оказывается, что транспортные РНК подобно молекулам матричных РНК так же имеют общий план

  6. структуры.

  7. В этой структуре принято выделять 4 основных элемента.

  8. 1 Стебель, содержащий акцепторный участок ЦЦА служащий для присоединения соответствующей аминокислоты. 2 На участке противоположный стеблю располагается антикодоьная петля содержащая аннтикодон 3 Псевдоуридиловая и дегидроуридиловая петли. 4 Добавочная петля (между псевдоуридиловой петлей и антикодоном). Роль этих структур

  9. Антикодон за счет взаимодействия с кодоном матричной РНК определяется место включения аминокислоты, переносимой данной молекулой в полептидную цепь белка при синтезе его на рибосомах.

  10. Дегидроуридировая и Псевдоуридиловая петли играют определенную роль во взаимодействии молекулы тРНК с рибосомами.

  11. При дальнейшем формировании третичной структуры все молекулы тРНК принимают Ц образную форму, причем на конце горизонтальной перекладины этой структуры расположен антикодон а ниждем конце вертикальной палочки находиться акцепторный иуклеотид ЦЦА.

  12. В каждой клетке содержится как минимум 20 тРНК. Поскольку ряд аминокислот могут кодироваться несколькими кодонами, то в клетке может присутствовать несколько изоакцепторных тРНК, которые имеют различные антикодоны

  13. комплементарные нескольким кодонам для данной аминокислоты, Считают, что примерно тРНК60. Около 60% всей

  14. РНК присутствующей в цитозоле клеток приходиться на рибосомальную РНК.

  15. В рибосомах эукариотических клеток присутствует 4 типа молекул РНК. Их обозначают в соответствии с их молекулярной массой. 1. В состав малой субединицы рибосом входит 18S РНК 2. В состав большой субединицы 3 типа:

  16. a)5S РHK 6)5,8S PHK в)28S РНК

  17. В цитозоле ядре клеток обнаружено большое количество небольших высоко стабильных молекул РНК имеющих в своем составе от 90 до 300 нуклеотидных остатков. Часть этих молекул участвуют в регуляции работы генетического аппарата клеток. ДЛя большинства этих молекул РНК функции пока неизвестны.

  18. тРНК. синтезируются с участием РНК-полимеразыЗ. Молекулы тРНК образуются первоначально в виде больших предшественников которые содержат нуклеотидные последовательности для нескольких молекул тРНК.

  19. Эти превичные транскрипты подвергаются нуклеолитическому процессигу под действием специальных нуклеаз.

  20. В ходе процессинга из общего предшественника выделяются отдельные нуклеотидные последовательности характерные для той или иной тРНК.

  21. Поскольку в составе генов некоторых тРНК имеется интрон, он так же удаляется в ходе процессинга.

  22. Дальнейшая модификация молекул тРНК включает в себя превращение части главных нуклеотндов в минорные за счет различных вариантов их химической модификации. И наконец к З'-кокцу присоединяется триплет ЦЦА, служащий акцепторным концом каждой тРНК.

5. КоА

Ацетил КоА

В кишечной стенки всосавшиеся ацилгицерины распадаются под действием тканевых липаз с образованием свободных жирных кислот и глицерола Часть моноацилглицеринов может превращаться в триащгаглицерины без предварительного расшепления йо так называемый моноацклглицериновый путь ресинтеза Все высшие жирные кислоты всосавшиеся к, кишечника используются в энтероцитах для ресинтеза различных лилидов Но перед тем как: вклю иться в различные липиды высшие жирные кислоты должны быть активированы Процесс активации высших жирных кислот состоит из 2 этапов

1 этап. За счет взаимодействия жирных кислот и использования специального фермента образуется ацшюденилаты

(так называемый термодинамический контроль направления процесса)

ЖК + АТФ -> R-С-АМФ + пирофосфат расщ. до ФК.(термодинамический контроль)

2 этап Происходит образование активной жирной кислоты соединенной с КоА и высвобождение АМФ Образование ацилКоА катализируется специальным ферментом, причем он катализирует и первую и вторую реакцию ацилКо Чсиптетата (тиокиназа)

R-С-АМФ + НSКоА -> R-С-SКоА + АМФ

В ходе активации высшей жирной кислоты АТФ распадается до АМФ и 2 остатков фосфорной кислоты таким жирные кислоты участвуют в активированной форме.

6. Биосинтез пуриновых нуклеотидов

Биосинтез пуриновых и пиримидиновых.

Синтез начинается с образования 5-фосфорибозил-1 -амина из рибозо-5-фосфат (АТФ-АМФ) получается 5-фосфорибозил- 1-дифосфат (гпутамин-глутомат\Н4Р2О7) 5-фосфорибозиламин.

затем к аминогруппе присоединяется остаток глицина и далее ; последовательно протекают реакции ооразования пуринового ядра с использованием метешгаьной группы метенил-Н4фолата, еще одной амидной группы пгутамина, диоксида углерод , аминогруппы аспарагиновой кислоты, формнльного остатка формил-Н4-фолата. Результатом этой серии реакций является образование инозиновой кислоты (ИМФ).

Инозиновая кислота - это нуклеотид, пуриновая часть которого представлена гипоксантином: она встречается

в составе тРНК в качестве одного из минорных нуклеотидов. Кроме того, инозиновая кислота служит предшественником основных пуриновых нукпеотидов - АМФ и ГМФ, схема синтеза которых представлена . При действии специфических киназ эти нуклеозидмонофосфаты превращаются в нуюгеозиддифосфаты и нуклеозидтрифосфаты.Следуюшим образом а)инозиновая к-та ( аспартат/ ГТФ-ГДФ+ НЗРО4) аленилоянтарная к-та (-фумарат) адениловая к-та (АТФ-АДФ) АДФ-АТФ б) инозиновая к-та (НЮ/ НАД+-НАДН+Н+) ксантиловая к-та (Н2О/ глутомин -глутомат, АТФ-АМФ+Н4Р2О7 ) гуаниловая к-та (АТФ-АДФ) ГДФ (АТФ-АДФ ) ГТФ.

Пиримидиновое ядро пиримидиновых пуклеогидов образуется из диоксида углерода, амидной группы глутамина, аспарагиновой кислоты. В результате цепи реакций из этих веществ синтезируется уридинмонофосфорная кислота, которая в свою очередь служит предшественником других пиримидиновых нуклеотидов — цитидиловых и тимидиловых.

Биосинтез уридиловон кислоты. Первая реакция пути синтеза УМФ — это образование карбамоилфосфата при действии кар бамоилфосфатсинтетазы II (точнее, при действии карбамоилфосфатсинтетазного активного центра 1юлиф>нкцнон!ии>жмх> фермеша). Б зтой реакции ЫН2-1рушш кароамиилфисфт'а образуется за счет амидной lyyjuibj пгутамина:

СО2 + Глутамин + 2АТФ + Н2О-» H2N-CO-OPO3H2 + Глутамат + 2АДФ + НЗРО4

Напомним, что при синтезе мочевины в реакции, катализируемой карбамоилфосфатсинтетазой 1, используется аммиак, а не глутамин. Эти ферменты различаются также локализацией:

карбамоилфосфатсинтетаза 1 содержится в митохондриях, главным образом в печени, а карбамоилфосфатсинтетаза II—в цитозоле, практически во всех клетках организма.

Далее карбамоилфосфат в реакции с аспарагиновой кислотой образует карбамоиласпарагиновую кислоту, которая денатурируется с образованием пиримидинового цикла дигидрооротовой кислоты:

Первые три реакции—образование карбамоилфосфата, карбамоиласпартата и дигидрооротовой кислоты— катализируются одним белком, содержащим активные центры для катализа каждой из реакций, Карбамоилфосфат и карбамоиласпартат не освобождаются из фермент-субстратного комплекса; освобождающимся продуктом действия

этого белка является дигидрооротовая кислота, Следовательно, Карбамоилфосфат, образующийся при синтезе УМФ,

не может быть использован для синтеза мочевины.

Дигидрооротовая кислота при действии отдельного фермента (дегидрогеназы) превращается в оротовую кислоту. Две следующие реакции—образование оротидиловой кислоты и ее декарбоксилирование—катализируются также одним белком. Таким образом, шесть активных каталитических центров, необходимых для синтеза пиримидиновых нуклеотидов, кодируются только тремя структурными генами.

Биосинтез цитидиловых иуклеотндов. Из УМФ при действии специфических киназ образуются УДФ и УТФ: УМФ + АТФ УДФ + АДФ УДФ + АТФ -> УТФ + АДФ Путем аминирования УТФ образуется цнтидинтрифосфорная кислота, в этой

Более сложным путем из уридиловой кислоты (а также из цитидиловой кислоты) образуются тимидиловые нуклеотиды.

Синтез УМФ регулируется по механизму отрицательной обратной связи: УТФ является аллостерическим ингибитором первого фермента этой метаболической цепи — карбамоилфосфат-синтетазы II. Этот механизм предотвращает избыточный синтез не только УМФ, но и всех других пиримидиновых нуклеотидов, поскольку они образуются из УМФ.

Билет №28

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]