
- •2. Стереохимия амк
- •4. Синтез жк
- •5. Ферм-ты,их отличие от химических катализаторов
- •6. Какими путями при обмене амк обр-ется аммиак, роль глутамина и аспарагина в обмене в-в. Дезаминирование амк
- •2. Мажорные-минорные осн, пуриновые-пиримидиновые
- •3. Общ хар. Сахаров, тригалозный сахар
- •Трегалоза (-d-глюкопиранозил-(11)--d-глюкопиранозид) – невосстанавливающий резервный дисахарид грибов и насекомых.
- •5. Оксидоредуктазы
- •6. Бэта окисление жирн кислот.
- •1 Таутомерные превращения азот.Оснований
- •2 Гликозиды написать формулу метил-альфа-d-глюкозогликозид
- •3 Написать формулу кардиолипина и написать их хар-ку
- •4 Кинетика фер-тативных процессов ур-ние михаэлис-Мэнтен
- •6 Цикл глюкоза в лактат и сколько нужно и затрачено атф
- •1.МРнк строение и роль
- •3.Арахидоновая кисл и её произв(пг)
- •4.Изомеразы.Общая хар-ка,примеры реакций
- •5.Как влияет концентрац......(константа мих-мэнтоса)
- •6.Дых цепь
- •6 Биосинтез белка
- •2. Общая хар-ристика лигаз
- •3. Биосинтез рнк
- •5. Изоф-ты, функции
- •6. Цикл пировиноградной к-ты
- •3. Таутомерия глюкозы и что такое мутаротация
- •6. Рилизинг-факторы (либерины)
- •1. Факторы, влияющие на скорость ферм. Реакции
- •2. Биосинтез триглицерина и глицеролфосфолипидов биосинтез триглицеридов
- •3. Стр. Нуклеотида
- •5. Горм. Гипофиза
- •Вазопрессин и окситоцин
- •Меланоцитстимулирующие гормоны (мсг, меланотропины)
- •Адренокортикотропный гормон (актг, кортикотропин)
- •Соматотропный гормон (стг, гормон роста, соматотропин)
- •Лактотропный гормон (пролактин, лютеотропный гормон)
- •Тиреотропный гормон (ттг, тиротропин)
- •Гонадотропные гормоны (гонадотррпины)
- •Липотропные гормоны (лтг, липотропины)
- •1 Отличия и сходста днк и рнк
- •2 Произв. Моносахаридов: кислоты, гликозиды, аминосахара
- •3 Роль тиреоидных гормонов
- •4 Оксиредуктазы
- •2 Гормоны поджелудочной железы...Функции ....Строение...
- •Глюкагон
- •3 Гетерогликаны
- •4 Классы ф-тов
- •5 Аллостерическая активность ф-тов.
- •14 Билет
- •3 Горомны гипоталамусса, их природа и ролль...
- •4 Специфичность ф-тов
- •3) Хим. Природа связей, стабилизирующих первичную и вторичную стр-ру белков и нуклеиновых к-т
- •4) Гомогликаны (строение, функции)
- •5) Пиридоксин, его роль в регуляции белкового обмена, переаминирование(механизм р-ии и роль в метаболизме)
- •2. Гормоны,как производные амк, гормональный цикл
- •4. Лигазы(ферм-ты),их функции.
- •5. Гормональная регуляция акт-сти ф-та с пом вторичных посредников.
- •6. Пентозофосфатный путь(пфп) окисления ув
- •Основные р-ции моносахаридов, продукты р-ций и их св-ва
- •2. Пептиды
- •1. Структурная организация фермента
- •Активный центр ферментов.
- •2. Регуляторные центры
- •4. Общая классификация витаминов
- •5. Гликогенез и его роль Синтез гликогена (гликогенез)
- •1)Гликофосфолипиды
- •2) Однокомпонентные и двухкомпонентные ф-ты
- •4)Гликозиды, к-ты,моносахара,как производные монасахаридов
- •5)Мембрано-опосредованное вз-действие гормонов
- •6)Катаболизм амк
- •1. Стеролы и стероиды
- •2. Лактоза и ее св-ва
- •Роль тРнк
- •1.Макроэргические соединения
- •2.Гидролазы, роль
- •3.Арахидоновая кислота и ее роль в метаболизме и произв
- •5.Ингибирование, виды. Константа Михаэлиса и зависимость
- •6.Свободное окисление, его роль в антиоксидантном механизме
Липотропные гормоны (лтг, липотропины)
Среди гормонов передней доли гипофиза, стр-ра и функция которых выяснены в последнее десятилетие, следует отметить липотропины, в частности β- и γ-ЛТГ. Наиболее подробно изучена первичная стр-ра β-липо-тропина овцы и свиньи, молекулы которого состоят из 91 АМКного остатка и имеют существенные видовые различия в последовательности АМК. К биологическим свойствам β-липотропина относятся жиро-мобилизующее действие, кортикотропная, меланоцитстимулирующая и ги-покальциемическая активность и, кроме того, инсулиноподобный эффект, выражающийся в повышении скорости утилизации глюкозы в тканях. Предполагают, что липотропный эффект осущ-тся через систему аденилатциклаза–цАМФ–протеинкиназа, завершающей стадией действия к-рой явл фосфорилирование неактивной триацилглицерол-липазы. Этот ф-т после активирования расщепляет нейтральные жиры на диацилглицерол и высшую ЖК.
Билет №12
1 Отличия и сходста днк и рнк
НК – это полинуклеотиды, полианионы, неразветвленные и нерегулярные, исключит крупные биополимеры. Сущ-ют линейные и замкнутые (кольцевые), одно- и двухцепоч полинуклеотиды. По особенностям хим строения НК делят на ДНК и РНК. Есть несколько типов ДНК: хромосомная (ядерная, нуклеоидная) и внехромосомная (митохондриальная, хлоропластная ДНК, плазмидная ДНК и др.). Все НК роднит принцип сходство стр. В природных олиго- и полинуклеотидах мономеры (нуклеотиды) связаны 3’,5’-фосфодиэфирными связями. При глубоком гидролизе разрушаются не только фосфодиэфирные, но и гликозидные связи, и нуклеиновые кислоты распадаются до азотистых оснований, моносахаридов и фосфорной кислоты. Как известно, в число канонических (основных) азотистых осн в сост ДНК преимущ входят А, Г, Ц т Т, а в сост РНК - А, Г, Ц и У. Реже встречающиеся (минорные) пуриновые и пиримидиновые азотистые основания явлются продуктами О-, С- или N-алкилирования канонических азотистых оснований. В тРНК минорные основания могут составлять до 19 %, а в ДНК проростков злаковых, в молоках рыб – до 8-10 %.
У эукариотов ДНК в основном локализована в ядре, а также в митох и хлоропл, где сост несколько процентов от общего кол-ва клет ДНК. У прокариотов ДНК представлена в виде нуклеоида (бактер хромосома), а также в виде внехром-ной плазмидной ДНК. Только хром-ная ДНК эукариот способна обр-вать нуклеопротеины, динамичные комплексы со специфич ДНК-связывающими белками, и формирует видоспецифическую структуру хромосом. У вирусов ДНК весьма плотно упакована в комплексе с белками.
РНК гетерогенна и предст в виде: мРНК – 3-5 %; тРНК – около 10 %; рРНК – около 85 % от общего кол-ва РНК в кл. Молекулы РНК менее крупные, чем ДНК, и всегда одноцепочечные. Все виды РНК представляют собой продукты транскрипции ДНК. У эукариотов РНК локализована в ядре, митох, хлоропластах и цитоплазме. Абсолютное содержание ДНК и РНК, а также их соотношение сильно варьирует в клетках разных видов и в разных клетках одного вида. Следует заметить, что во внеклеточной среде обнаруживаются только следовые количества нуклеиновых кислот, по-видимому, в силу быстрого ферментативного гидролиза активными нуклеазами. Доля ДНК в метаболически активной клетке значительно меньше, чем в метаболически неактивной: например, в сперматозоидах ДНК составляет около 60 % сухого вещества, а в мышцах лишь 0,2%. С другой стороны величина отношения содержания РНК к содержанию ДНК в клетке тем выше, чем выше ее метаболическая активность. Сложность и размеры ДНК увеличиваются с усложнением организации живых организмов. Так, например, у бактерий размер генома можно принять равным порядка миллиона пар оснований, где закодировано порядка тысячи белков. А у человека порядка миллиарда пар оснований (в 1000 раз больше, чем у бактерий) кодируют около 30000 белков, т.е. всего лишь в 30 раз больше, чем у бактерий. Таким образом, параллельно с усложнением организации, увеличивается доля некодирующей ДНК (многократные повторы, интроны, регуляторные участки).