
- •4. Специфика научного познания
- •1. Научное знание
- •5. Средства научного познания
- •2. Естественные и гуманитарные науки.
- •6. Начало естествознания
- •8. Взаимосвязь теории и эксперимента
- •9. Модели научного познания
- •10. Научные традиции
- •14. Проблемы науки
- •12. Научные открытия
- •13. Фундаментальные научные открытия
- •15. Идеалы научного знания
- •16. Функции науки
- •17. Научная этика
- •18. Оценка вклада конкретных ученых в науку
- •19. Методы очистки веществ.
- •22. Калориметрия
- •21 Рефрактометрия.
- •23 Рентгенография.
- •26, Электронография
- •27.Полярография и анодная вольтамперометрия
- •28, Спектральные методы
- •31, Спектры комбинационного рассеяния
- •29. Электронные спектры поглощения и люминесценции
- •30. Инфракрасные спектры поглощения
- •33. Ядерный магнитный резонанс (ямр)
- •36. Сверхпроводимость и сверхтекучесть.
- •Зонная структура. Модель Кронига—Пенни
- •38.Энергетические зонные структуры в кристаллах. Уровень Ферми. Туннельный диод лЭсаки.
- •39. Фотоэлектронная спектроскопия( фэс). Работа выхода
- •40. Масс-спектрометрия
- •41. Спектрополяриметрия. Эффект Фарадея.
- •42. Магнитооптические эфекты.
- •43. Эффект Холла.
- •44. Туннельный эффект и сканирующий туннельный микроскоп.
- •50Нормальные случайные величины
- •45Атомно-силовой микроскоп
- •47 Лазеры и голография
- •48.Магнитная нейтронография
- •56. Регрессия: метод наименьших квадратов.
- •11. Научные революции
- •51. Среднее и истинное значения измеряемой величины. Дисперсия. Оценка квадратичного отклонения по размаху.
- •52. Дисперсия совокупности среднеарифметических величин. Доверительные интервалы. Правило «трех сигм».
- •Погрешность интерполирования
- •55. Сплайн-интерполяция.
- •32 Электронный парамагнитный резонанс (эпр)
40. Масс-спектрометрия
Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) — метод исследования вещества путём определения отношения массы к заряду (качества) и количества заряженных частиц, образующихся при том или ином процессе воздействия на вещество (см. методы ионизации). История масс-спектрометрии ведётся с основополагающих пионерских опытов Джона Томсона в начале 20-го века. Окончание «-метрия» термин получил после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.
Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия непосредственно детектирует сами частицы вещества.
Масс-спектрометрия в широком смысле — это наука получения и интерпретации масс-спектров, которые в свою очередь получаются при помощи масс-спектрометров [1].
Масс-спектрометр — это вакуумный прибор, использующий физические законы движения заряженных частиц в магнитных и электрических полях, и необходимый для получения масс-спектра.
Масс-спектр, как и любой спектр, в узком смысле — это зависимость интенсивности ионного тока (количества) от отношения массы к заряду (качества). Ввиду квантования массы и заряда типичный масс-спектр является дискретным. Обычно (в рутинных анализах) так оно и есть, но не всегда. Природа анализируемого вещества, особенности метода ионизации и вторичные процессы в масс-спектрометре могут оставлять свой след в масс-спектре (см. метастабильные ионы, градиент ускоряющего напряжения по местам образования ионов, неупругое рассеивание). Так ионы с одинаковыми отношениями массы к заряду могут оказаться в разных частях спектра и даже сделать часть его непрерывным. Поэтому масс-спектр в широком смысле — это нечто большее, несущее специфическую информацию, и делающее процесс его интерпретации более сложным и увлекательным.
Ионы бывают однозарядные и многозарядные, причём как органические, так и неорганические. Большинство небольших молекул при ионизации приобретает только один положительный или отрицательный заряд. Атомы способны приобретать более одного положительного заряда и только один отрицательный. Белки, нуклеиновые кислоты и другие полимеры способны приобретать множественные положительные и отрицательные заряды.
Атомы химических элементов имеют специфическую массу. Таким образом, точное определение массы анализируемой молекулы, позволяет определить её элементный состав (см. элементный анализ). Масс-спектрометрия также позволяет получить важную информацию об изотопном составе анализируемых молекул (см. изотопный анализ).
В органических веществах молекулы представляют собой определённые структуры, образованные атомами. Природа и человек создали поистине неисчислимое многообразие органических соединений. Современные масс-спектрометры способны фрагментировать детектируемые ионы и определять массу полученных фрагментов. Таким образом, можно получать данные о структуре вещества.