
- •4. Специфика научного познания
- •1. Научное знание
- •5. Средства научного познания
- •2. Естественные и гуманитарные науки.
- •6. Начало естествознания
- •8. Взаимосвязь теории и эксперимента
- •9. Модели научного познания
- •10. Научные традиции
- •14. Проблемы науки
- •12. Научные открытия
- •13. Фундаментальные научные открытия
- •15. Идеалы научного знания
- •16. Функции науки
- •17. Научная этика
- •18. Оценка вклада конкретных ученых в науку
- •19. Методы очистки веществ.
- •22. Калориметрия
- •21 Рефрактометрия.
- •23 Рентгенография.
- •26, Электронография
- •27.Полярография и анодная вольтамперометрия
- •28, Спектральные методы
- •31, Спектры комбинационного рассеяния
- •29. Электронные спектры поглощения и люминесценции
- •30. Инфракрасные спектры поглощения
- •33. Ядерный магнитный резонанс (ямр)
- •36. Сверхпроводимость и сверхтекучесть.
- •Зонная структура. Модель Кронига—Пенни
- •38.Энергетические зонные структуры в кристаллах. Уровень Ферми. Туннельный диод лЭсаки.
- •39. Фотоэлектронная спектроскопия( фэс). Работа выхода
- •40. Масс-спектрометрия
- •41. Спектрополяриметрия. Эффект Фарадея.
- •42. Магнитооптические эфекты.
- •43. Эффект Холла.
- •44. Туннельный эффект и сканирующий туннельный микроскоп.
- •50Нормальные случайные величины
- •45Атомно-силовой микроскоп
- •47 Лазеры и голография
- •48.Магнитная нейтронография
- •56. Регрессия: метод наименьших квадратов.
- •11. Научные революции
- •51. Среднее и истинное значения измеряемой величины. Дисперсия. Оценка квадратичного отклонения по размаху.
- •52. Дисперсия совокупности среднеарифметических величин. Доверительные интервалы. Правило «трех сигм».
- •Погрешность интерполирования
- •55. Сплайн-интерполяция.
- •32 Электронный парамагнитный резонанс (эпр)
19. Методы очистки веществ.
Для характеристики чистоты вещества используют следующие константы и методы: температуры: плавления, кипения, кристаллизации; коэффициент преломления света; плотность; данные спектров поглощения (электронные и колебательные ИК-спектры: длина волны максимума поглощения, форма полосы, коэффициент поглощения) и спектров флуоресценции и фосфоресценции; данные спектров ядерного магнитного резонанса (ЯМР), хроматографический анализ, электрические константы (удельная проводимость) и др. Степень чистоты: весовые, атомные проценты примеси в основном веществе. Перечислим методы очистки:
Кристаллизация. Метод основан на том, что примесь имеет более высокую растворимость в растворе (расплаве), по сравнению с растворимостью в кристаллическом состоянии основного вещества. Многократная кристаллизация. Метод зонной плавки.
Возгонка (сублимация). Переход в газовую фазу, минуя жидкую фазу основного вещества с последующей кристаллизацией из газовой фазы. Градиентная возгонка используется для разделения смеси веществ с разными температурами сублимации или кристаллизации. Вакуумная возгонка.
Перегонка (дистилляция). Используется для низкоплавких и жидких веществ. Азеотропные смеси. Дефлегматоры, дистилляционные колонны. Вакуумная перегонка. Перегонка с водяным паром.
Хроматография. Основана на различной способности веществ адсорбироваться на поверхности сорбента или распределяться между двумя несмешивающимися фазами (жидкость – жидкость, жидкость – газ), из которых одна фаза находится на поверхности сорбента. Отсюда жидкостная адсорбционная и распределительная хроматография, газовая хроматография. Жидкостная адсорбционная хроматография основана на различной способности веществ сорбироваться на поверхности сорбента и десорбироваться при пропускании растворителя – элюента, в качестве последнего используют оксид алюминия, кремневую кислоту и диоксид кремния (силикагели), а также гранулированные полисахариды, например, декстраны, которые в растворителе набухают, образуя гранулированный гель (гель-хроматография). Разделение смеси веществ осуществляется двумя способами: в хроматографических колонках и в тонком слое сорбента (тонкослойная хроматография). Жидкостная распределительная хроматография является разновидностью адсорбционной хроматографии: сорбент покрыт тонкой пленкой жидкости, которая не смешивается с элюентом. При пропускании элюента вещества распределяются между жидкостью и элюентом. Если сорбентом является бумага (вода сорбирована на целлюлозе), метод называется хроматографией на бумаге.
В препаративных целях для получения достаточно больших количеств веществ используется колоночная хроматография. Высокое давление, подаваемое на элюент, позволяет использовать длинные колонки и получить более эффективное разделение компонентов смеси.
Гель-фильтрация. Используется в основном для разделения биологических объектов. Матрица-гель состоит из множества пористых частиц, между которыми находится элюент. При пропускании через колонку смеси веществ большие молекулы не задерживаются в поре и вместе с элюентом выходят первыми. Молекулы меньшего размера задерживаются в порах и выходят из колонки по мере его уменьшения.
Электрофорез. Метод применяется для разделения заряженных частиц и основан на различной подвижности молекул компонентов смеси в постоянном электрическом поле на сорбенте, обычно в геле (например, в полиакриламидном геле). Смесь наносится на поверхность геля. В электрическом поле компоненты с отличающимися подвижностями заряженных молекул разделяются в геле и с различными скоростями поступают в сборную камеру в основании колонки, откуда вымываются элюентом – буферным раствором с определенным pH.