Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Контрольная работа №1 / Теория множеств(пособие ЕНФ)(Водопьянов).doc
Скачиваний:
183
Добавлен:
02.05.2014
Размер:
1.07 Mб
Скачать

§ 4. Функция

Пусть Х и У два множества и F отношение в ХУ.

Определение. Отношение F называется функцией из Х в У, если оно удовлетворяет свойству:

из xFy и xFz следует, что y = z.

В дальнейшем мы будем применять также обозначение y = F(x) вместо xFy, если F является функцией. Множества DF и RF , введенные в предыдущем пункте для функции F носят соответственно названия: DF - область определения и RF - область значений функции F. Очень часто область определения и область значений заранее не задаются, а возникают, исходя из задания функции.

Примеры.

1) {(1,2), (2,2), (Рузвельт, Черчилль)};

2) {(1,2), (1,3), (2,2)};

3) {(x, x2 +x+1)|xR};

4) {(x2 ,x)|xR}.

Из приведенных примеров 1 и 3 определяют функцию, а 2 и 4 не являются функцией, т.к. не выполнено определение функции.

Для функции применяются также другие названия: преобразование, отображение, соответствие. Если y = F(x), то x называют аргументом функции, а y образом.

Две функции F и G считаются равными, если выполнены равенства соответствующих множеств. Последнее эквивалентно следующим двум равенствам:

DF =DG и F(x)=G(x) для xDF.

Следующие определения переносятся с отношений:

1) В случае, когда DF = Х функцию называют всюду определенной.

2) Функция F из Х в У называется сюръекцией (или отображением на), если RF =У.

3) Функция F из Х в У называется инъекцией (или однозначным отображением), если из х1  х2 следует, что F(х1)  F(х2).

Всюду определенная функция F из Х в У называется биекцией, если она одновременно является сюръекцией и инъекцией.

Примеры: 1) функция у=еx - биекция из R в R+ ;

2) у=х2 - сюръекция из [-1, 1] на [0, 1], не являющаяся инъекцией.

Определение. Пусть F - функция из X в Y, а G - из Y в Z. Суперпозицией функций F и G называется такая функция H из X в Z, что z = H(x) (т.е. (x, z) H  XZ) тогда и только тогда, когда y=F(x) и z=G(y). Суперпозиция обозначается GoF. В определении Н – функция, почему?

Определение. Для функции F из Х в У функция G из У в Х называется правой обратной (соответственно, левой обратной), если справедливо равенство FoG=IУ (соответственно, GoF=IХ), где через IХ (IУ) обозначено тождественное отображение на Х (соответственно на У), т.е. IХ(x) = x (IУ(y) = y).

Функция у=х2, из рассмотренного выше примера не имеет левой обратной, но имеет правую обратную (ею является функция х= ). Однако если сузить область определения функции у=х2 до отрезка [0,1] (или [-1,0]), оставив туже самую область значений, то эта функция будет иметь уже и левую обратную: х= (соответственно, х= -).

Лемма 1. Если функция F имеет левую обратную, то F является инъекцией.

Доказательство. Действительно, если бы F не являлась инъекцией, то существовали бы х1  х2 такие, что y=F(x1)=F(x2). Пусть G - левая обратная к F, то x1 = GoF(x1 ) = G(y) = GoF(x2 ) = x2, что противоречит предположению.

Лемма 2. Если функция F имеет правую обратную, то F является сюръекцией.

Доказательство. Утверждение легко вытекает из определения правой обратной функции G: для любого уУ  FoG(у)=у.

Лемма 3. Если у функции F из Х в У существуют левая и правая обратная функции, то они совпадают.

Доказательство. Пусть G и H - обозначают соответственно левую и правую обратную функции к F. Тогда DG = RF = DH = У. Остается проверить равенство G(y) = H(y) для любого yУ. Но G(y) = G(IУ(y)) = G(F(H(y))) = IХ(H(y)) = H(y).

Определение. Функция из У в Х, которая является правой и левой обратной к функции F, называется обратной функцией к F и обозначается через F -1.

Теорема. Пусть F является функцией из Х в У. Для существования обратной функции F-1 из У в Х необходимо и достаточно, чтобы F была биекцией.

Необходимость легко вытекает из лемм 1 и 2.

Достаточность. Пусть yУ. Так как F является сюръекцией, то существует хХ такое, что F(x)=y. При этом такое х одно, так как F также и инъекция. Определим функцию G(x)=y. Легко проверить, что таким образом определенная функция является обратной к F.

Следствие. Если F является биекцией, то и F-1 также является биекцией.

Задачи.

1. Установить, что следующие отношения являются функцией:

а) вУ, R = X{в}XУ (постоянное отображение);

б) R = {(x, x): xX}XX (тождественное отображение IX);

в) R = {((x, y), x)}(XY)X ( проекция на Х);

г) R = {((x, y), у)}(XY)Y ( проекция на Y).

2. Пусть А - произвольное множество из области определения функции f(х). Верно ли равенство f -1 [f(A)] = A всегда ?

3. Пусть В - произвольное множество из области значений функции f(х). Верно ли равенство: f[f -1 (B)] = B всегда ?

4. Верны ли равенства:

f(AB) = f(A)f(B);

f(AB) = f(A)f(B)?

5. Верно ли, что f(R – А) = f(R) – f(А), где R - область определения функции?

6. Пусть А и В - два множества из области значений функции у = f(х). Верны ли равенства:

f -1 (AB) = f -1 (A)f -1 (B),

f -1 (AB) = f -1 (A)f -1 (B)?

7. Пусть L - область значений функции у = f(х), а АL. Справедливо ли равенство: f -1 (L – A) = f -1 (L) – f-1 (А)?

8. Задана функция f: х  х2 + рх + q и интервал (a, b). Определить множество f -1 ((a, b)).

9. Задана функция f из А в В. Доказать, что для всякого МВ справедливо включение f[f -1 (M)]  M. Пусть Е А. Доказать, что f-1 [f(E)] E.

10. Задана функция f из А в В. Пусть Е1 А, Е2 А, М1 В, М2 В. Доказать, что если Е1 Е2 , то f(Е1)f(Е2), если М1 М2, то f -11)  f -12).

11. Задана функция f из А в В. Доказать, что следующие условия попарно эквивалентны:

а) f - инъекция;

б) f -1 (f(Е)) = Е для любого ЕА;

в) f(ЕМ) = f(Е)f(М) для любых Е, МА;

г) f(Е)f(М) =  для любой пары множеств ЕА, МА такой, что ЕМ= ;

д) F(Е – М) = f(Е) – f(М) для любой пары множеств ЕА, МА такой, что МЕ.

12. Пусть даны множества А, В, С, D и функции

f: А  В, g: В  С, h: С  D.

Доказать, что если каждая из суперпозиций gof и hog есть биекция, то и все функции f, g и h являются биекциями.

13. Пусть А - конечное множество и f функция из А в А. Доказать, что

а) если f является сюръекцией, то f также и инъекция;

в) если f является инъекцией, то f также и сюръекция.

14. Построить отношения, удовлетворяющие следующим требованиям:

а) рефлексивное, симметричное, не транзитивное;

б) рефлексивное, транзитивное, не симметричное;

в) симметричное, транзитивное, не рефлексивное.

Соседние файлы в папке Контрольная работа №1