Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вяткин_2_сем.docx
Скачиваний:
10
Добавлен:
22.09.2019
Размер:
1.76 Mб
Скачать

7) Объемная плотность заряда

Напомним, что

Тогда энергия

Так как то

Где - потенциал в точке i-го заряда, а - объем -го заряда.

Итак:

Таким образом, энергия взаимодействия точечных зарядов:

При этом для одного заряда q в точке с потенциалом φ энергия

- энергия заряда в поле .

8) Диполь.

Электрический диполь —совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга

Потенциальная энергия электрического диполя в электрическом поле равна 

Любая в целом электронейтральная система, содержащая электрические заряды, в некотором приближении может рассматриваться как электрический диполь с моментом   где   — заряд i-го элемента,   — его радиус-вектор.

Дипольный момент — физическая величина, характеризующая электрические свойства системы заряженных частиц. Для системы из N частиц дипольный момент равен

,

где qi — заряд частицы с номером i, а   — её радиус-вектор;   — число положительно/отрицательно заряженных частиц, N = N + + N  ,   — их заряды.

Дипольный момент нейтральной системы зарядов не зависит от начала координат, а определяется относительным расположением (и величинами) зарядов в системе.

Поле диполя вычисляется по формуле:

8A) Диполь во внешнем электрическом поле

Найдем момент сил, действующих на диполь в однородном электрическом поле. Пусть положения положительного и отрицательного зарядов относительно центра диполя характеризуются векторами r+ и r- , соответственно. Тогда, в соответствии с определением момента сил, имеем

Рис. 3.4

Так как по определению  , то окончательно получим

(3.9)

Момент сил, очевидно, равен нулю, когда векторы p и E коллинеарны, однако устойчивым положением является только такое положение, когда они еще и совпадают по направлению. В однородном поле, очевидно, F+ + F_= 0.

\

9) В проводниках могут перемещаться свободно не только заряды принесенные из вне, но и микроскопические заряды, из которых состоят атомы и молекулы проводника (электроны, ионы). Поэтому при помещении незаряженного проводника во внешнее электрическое поле  свободные микроскопические заряды будут перемещаться к его поверхности: положительные по полю, а отрицательные против поля (рис.15.4). На одном конце проводника будет скапливаться избыток положительного заряда, а на другом избыток отрицательного до тех пор, пока создаваемое этими зарядами дополнительное поле   не скомпенсирует внешнее поле во всех точках внутри проводника. При этом суммарное поле   внутри проводника и на его поверхности будет удовлетворять условию   и   т.е. внутри проводника   , а в близи проводника будет заметно отличаться от своего первоначального значения   . Заряды на противоположных краях проводника называются индуктированными или наведенными.

Индуктивные заряды распределяются по внешней поверхности проводника. Если внутри проводника имеется полость, то при равновесном распределении индуцированных зарядов поле внутри нее также равно нулю. На этом основана электростатическая защита.

Электростатическая защита — помещение приборов, чувствительных к электрическому полю, внутрь замкнутой проводящей оболочки для экранирования от внешнего электрического поля.

Это явление связано с тем, что на поверхности проводника (заряженного или незаряженного), помещённого во внешнее электрическое поле, заряды перераспределяются так (явление электрической индукции), что создаваемое ими внутри проводника поле полностью компенсирует внешнее.

10)Потенциал уединенного проводника пропорционален находящемуся на нем заряду. Действительно, увеличение в некоторое число раз заряда приводит к увеличению в тоже число раз напряженности поля в каждой точке окружающего проводника пространства, т.е.

Вводя соответствующий коэффициент пропорциональности, запишем   или

где С - называется электроемкостью.

Таким образом, электроемкость уединенного проводника есть физическая величина численно равная величине заряда, который необходимо сообщить данному проводнику для увеличения его потенциала на единицу. В СИ единицей емкости является Фарад (Ф).

Определим электроемкость уединенного шара. Потенциал заряженного шара радиуса R

Сравнивая с   получаем

11) Электроемкость. Конденсаторы. Энергия электростатического поля.

Электроемкостью (емкостью) C уединенного изолированного проводника называется физическая величина, равная отношению изменения заряда проводника q к изменению его потенциала f:

C = Dq/Df.

Электроемкость уединенного проводника зависит только от его формы и размеров, а также от окружающей его диэлектрической среды (e).

Единица измерения емкости в системе СИ называется Фарадой. Фарада (Ф) - это емкость такого уединенного проводника, потенциал которого повышается на 1 Вольт при сообщении ему заряда в 1 Кулон. 1 Ф = 1 Кл/1 В.

Конденсатором называют систему двух разноименно заряженных проводников, разделенных диэлектриком (например, воздухом). Свойство конденсаторов накапливать и сохранять электрические заряды и связанное с ними электрическое поле характеризуется величиной, называемой электроемкостью конденсатора. Электроемкость конденсатора равна отношению заряда одной из пластин Q к напряжению между ними U:

C = Q/U.

В зависимости от формы обкладок, конденсаторы бывают плоскими, сферическими и цилиндрическими. Формулы для расчета емкостей этих конденсаторов приведены в таблице.

Тип конденсатора

Схематическое изображение

Формула для расчета емкости

Примечания

Плоский конденсатор

C = ee0S/d

S - площадь пластины; d - расстояние между пластинами.

Сферический конденсатор

C = 4pee0R1R2/(R2 - R1)

R2 и R1 - радиусы внешней и внутренней обкладок.

11a)

Цилиндрический конденсатор

C = 2pee0h/ln(R2/R1)

h - высота цилиндров.

Соединение конденсаторов в батареи.

На практике конденсаторы часто соединяют в батареи - последовательно или параллельно.

П ри параллельном соединении напряжение на всех обкладках одинаковое  U1 = U2 = U3 = U = e, а емкость батареи равняется сумме емкостей отдельных конденсаторов C = C1 + C2 + C3.

 

П ри последовательном соединении заряд на обкладках всех конденсаторов одинаков Q1 = Q2 = Q3, а напряжение батареи равняется сумме напряжений отдельных конденсаторов U = U1 + U2 + U3.

Емкость всей системы последовательно соединенных конденсаторов рассчитывается из соотношения:

1/C = U/Q = 1/C1 + 1/C2 + 1/C3.

Емкость батареи последовательно соединенных конденсаторов всегда меньше, чем емкость каждого из этих конденсаторов в отдельности.

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает

Частное U / d равно напряженности поля в зазоре; произведение S·d представляет собой объем V, занимаемый полем. Следовательно,