Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Общими усилиями.docx
Скачиваний:
47
Добавлен:
22.09.2019
Размер:
3.18 Mб
Скачать

9. Составной транзистор – это комбинация двух (или нескольких) транзисторов, которую можно рассматривать как единое целое.

Наибольшее распространение среди составных транзисторов получила схема Дарлингтона (рис. 2.1) в которой используются транзисторы с одним типом проводимости (например, n–р–n). Главная особенность схемы – большая величина коэффициента передачи базового тока b = h21. Действительно, если пренебречь тепловыми токами транзисторов, из рис. 2.1 следует:

Для увеличения выходной мощности могут быть использованы бустеры на составных транзисторах, включенных по схеме Дарлингтона (рисунок 4.15), у которой коэффициент передачи по току равен произведению коэффициентов передачи тока базы транзисторов и причем возможна однокристальная реализация данной структуры, например, составной транзистор КТ829.

Из полевых транзисторов в УМ более пригодны МОП- транзисторы с индуцированными каналами n- и p- типа, имеющими такой же характер смещения в цепи затвор-исток, как и у биполярных, но имеющих более линейную входную ВАХ, приводящую к меньшему уровню ВАХ. Схема УМ на ПТ указанного типа приведена на рисунке 4.16.

В данном каскаде введена положительная ОС по питанию путем включения резистора последовательно с . В точку a выходное напряжение подается через конденсатор и служит "вольтодобавкой", увеличивающей напряжение питания предоконечного каскада в тот полупериод, в который ток транзистора уменьшается. Это позволяет снять с него достаточную амплитуду напряжения, необходимую для управления оконечным истоковым повторителем, повышает выходную мощность и КПД усилителя. Аналогичная схема "вольтодобавки" применяется и в УМ на БТ.

14. Операционный усилитель (оу) как аэ аналоговой схемотехники. Модели оу. Представление ачх и фчх и двух- и трехкаскадной моделей оу

Операционный усилитель (ОУ)— усилитель постоянного тока с дифференциальным входом и, как правило, единственным выходом, имеющий высокий коэффициент усиления. ОУ почти всегда используются в схемах с глубокой отрицательной обратной связью, которая, благодаря высокому коэффициенту усиления ОУ, полностью определяет коэффициент передачи полученной схемы.

В настоящее время ОУ получили широкое применение как в виде отдельных чипов, так и в виде функциональных блоков в составе более сложных интегральных схем. Такая популярность обусловлена тем, что ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

В ОУ отдельные его каскады соединяются между собой непосредственно, и поэтому его АЧХ не имеет спада на нижних частотах. С увеличением же частоты усиливаемого сигнала наблюдается падение коэффициента усиления ОУ. Это объясняется наличием в интегральном ОУ распределенных паразитных емкостей, которые закорачивают высокочастотные сигналы на землю все более и более по мере роста их частоты.

При рассмотрении этого вопроса, распределенные паразитные емкости удобно сводить к одной, емкость которой является суммой всех паразитных емкостей в схеме.

Любой многокаскадный усилитель на высоких частотах можно представить в виде ряда генераторов сигнала KUвх, нагруженных на соответствующие эквивалентные интегрирующие RC-цепи. Количество таких цепей равно числу отдельных каскадов усиления.

Амплитудно-частотная и фазо-частотная характеристики одного такого каскада описываются следующими выражениями:

,

.

Если выполняется обычное для ОУ неравенство Rн >>Rвых, то

.

Графическая зависимость от частоты модуля коэффициента передачи напряжения ОУ и сдвига фазы выходного сигнала относительно входного приведена на рис. 78.

Рис. 78. АЧХ и ФЧХ одного каскада ОУ

 

АЧХ и ФЧХ усилителя обычно стоят в логарифмическом масштабе. На частоте fгр, где резистивное и емкостное сопротивления равны аппроксимированная АЧХ претерпевает излом. На частоте излома усиление усилителя падает на 3 дБ. Начиная с fгр при увеличении частоты в 10 раз (на декаду) во сколько же раз (т. е. на 20 дБ) уменьшается коэффициент усиления по напряжения каскада. Таким образом скорость спада АЧХ за частотой излома составляет –20 дБ/дек или –6 дБ/октаву (октаве соответствует изменение частоты в два раза).

Фазо-частотная характеристика аппроксимируется тремя отрезками прямых, причем наклон прямой составляет – 45° /дек, а сопряжение асимптот происходит на частотах 0,1 fгр и 10 fгр при максимальной погрешности аппроксимации 5,7° . На частоте fгр ,отставание фазы выходного сигнала по отношению ко входному составляет 45° . На частоте fт усиление усилителя уменьшается до 0 дБ или единицы, а фазовый сдвиг достигает –90° .

АЧХ и ФЧХ многокаскадного усилителя

Формирование АЧХ и ФЧХ многокаскадного усилителя удобно проанализировать с помощью эквивалентной схемы (рис. 79).

Рис. 79. Эквивалентная схема трехкаскадного ОУ

Каждый каскад усилителя имеет собственную постоянную времени. Каждый из каскадов данной схемы имеет также собственный коэффициент передачи напряжения на постоянном токе K1, K2, K3 и соответствующие частоты среза fгр 1, fгр 2 , fгр 3.

Скорость спада результирующей АЧХ (рис 80) увеличивается после каждой частоты среза на –20 дБ/дек, при этом сдвиг фазы сигнала соответственно возрастает на –90° .

Рис. 80. АЧХ и ФЧХ трехкаскадного ОУ

Скорость спада АЧХ сохраняется также и за пределами частоты единичного усиления. На рис. 80 ошибка идеализированной ФЧХ имеет максимальную величину равную 45° на частоте fгр. Для удобства анализа схемы на графиках частоту указывают в логарифмическом масштабе.