
- •2.3. Методы анализа линейных усилительных каскадов
- •7. Вольт-амперные характеристики полевых транзисторов
- •8. Схемы замещения.
- •9. Составной транзистор – это комбинация двух (или нескольких) транзисторов, которую можно рассматривать как единое целое.
- •14. Операционный усилитель (оу) как аэ аналоговой схемотехники. Модели оу. Представление ачх и фчх и двух- и трехкаскадной моделей оу
- •15. Обеспечение устойчивости оу с цепью оос.
- •16. Реальные параметры и идеализированные свойства оу. Эквивалентная схема оу по постоянному току. Основные операционные схемы (ос): инвертирующая, неинвертирующая и дифференциальная.
- •18. Особенности проектирования и расчета пн и птн
- •19. Статические и динамические нагрузочные характеристики аэ и их использование в аналоговой схемотехнике. Режимы а, в, с, d. Основные энергетические показатели и диаграммы мощности режимов.
- •21.Стабилизация рт с помощью оос. Параметрическая стабилизация. Цепи питания бт. Использование гст для задания режимов работы аэ
- •23. Каскады с повышенным входным сопротивлением на бт и пт. Применение составных транзисторов. Пересчет параметров транзисторов при различных включениях
- •24. Особенности работы каскадов в режиме большого сигнала. Требования, предъявляемые к выходным каскадам. Виды каскадов. Однотактные выходные каскады.
- •25. Построение нагрузочных характеристик. Двухтактные выходные каскады. Классификация, особенности работы и свойства.
- •26. Особенности оценки энергетических показателей двухтактного каскада в режиме в. Методы стабилизации режима по постоянному току при работе с отсечкой тока. Выходные каскады с повышенным кпд
- •27.Бестрансформаторный усилитель мощности.
- •28.Определение параметров транзистора по его входным и выходным вольтамперным характеристикам.
- •29.Широкополосные усилители (шу) с коррекцией ачх и пх. Методы коррекции характеристик (нч и вч).
- •30.Усилители постоянного тока (упт). Принципы построения, обеспечение минимального дрейфа параметров. Упт с преобразованием.
- •31.Усилительные каскады с динамической нагрузкой. Каскадный усилитель. Многокаскадные усилители с оос. Методы увеличения глубины оос. Паразитные обратные связи и методы борьбы с ними.
- •32. Построение нагрузочных прямых по постоянному и переменному току.
- •33. Расчет параметров усилителей с обратными связями
- •34. Основные определения (терминология) в интегральной схемотехнике. Интегральные микросхемы, элементы, компоненты. Элементы конструкции.
- •35. Простые и сложные ис. Степень интеграции ис. Классификация ис
- •36. Система условных обозначений в ис. Методы изготовления (виды технологий) ис
- •37. Оу как активный элемент мэу. Типы оу и их отличительные особенности. Меры предосторожности и полезные советы при использовании оу
- •38.Корректирующие усилители на оу
- •39. Гст на основе оу. Гст с изолированной нагрузкой. Оценка параметров и точности формирования тока с реальным оу. Гст с заземленной нагрузкой.
- •42.Стабилизаторы напряжения сн на основе оу. Сн как элемент схемотехники. Однополярные сн с опорными стабилитронами.
- •43. Сн с повышенной нагрузочной способностью и ограничениям по току. Следящий сн разнополярных напряжений.
- •44. Экстрематоры сигналов на основе оу (однополярные и двухполярные). Оценка точности формирования экстремума.
- •45. Линейные преобразователи переменного напряжения в постоянное. Сущность линеаризации амплитудной характеристики. Критерий малости преобразуемого напряжения. Пн амплитудных значений.
- •46. Электронно-управляемые масштабные пн на основе оу. Пн с линейным и экспоненциальным управлением и электронным переключением полярности коэффициента передачи.
- •47. Мостовой усилитель как преобразователь приращений проводимостей (сопротивлений) в напряжение. Циркулятор сигналов. Линейные преобразователи полных проводимостей (сопротивлений) в напряжение.
- •48. Устройства регулирования сигналов и регулируемые усилители
- •49. Основные свойства и параметры перемножителей сигналов (пс). Реализация математических операций (умножения, деления, возведения в квадрат, извлечения квадратного корня) на основе пс.
- •1.2.7 Синхронный (линейный) амплитудный демодулятор
- •51. Методы реализации пс на основе операций логарифмирования и антилогарифмирования сигналов, на основе изменения проводимости канала пт, на основе использования время амплитудного преобразования
- •1.2.11Времяамплитудный перемножитель сигналов
- •52. Расчет упт и функциональных преобразователей на основе оу.
- •53. Системы сбора и распределения данных. Интегральные компараторы сигналов. Аналоговые коммутаторы ак. Многоканальные коммутаторы: мультиплексоры, демультиплексоры
- •58. Задачи, основные этапы и особенности схемотехнического проектирования. Основные принципы интегральной схемотехники. Теоретические основы интегральной схемотехники. Анализ структур активных
- •59. Транзисторные структуры тс. Диодно-транзисторные структуры дтс как отражатели тока. Токовое зеркало Уилсона. Биполярно-униполярные структуры. Отражатели тока на пт.
- •60. Проблемы непосредственной связи в полупроводниковых ис. Согласование импедансов и уровней постоянного тока. Стабилизация уровней напряжения и тока.
- •61. Источники опорного напряжения ион на бт и пт. Ион с умножением напряжения база-эмиттер бт. Повышение коэффициента фильтрации питающего напряжения. Ион с термокомпенсацией.
- •63. Основные типы каскадов и ососбенности их реализации в полупроводниковых ис: однотактные, двухтактные, дифференциальные. Ду на бт и пт как активные элементы интегральной схемотехники.
- •64. Разновидности схемотехники интегральных ду. Ду на моп-транзисторах с активной нагрузкой.
- •70. Схемотехническое проектирование реальной модели оу. Схемотехника модели. Формирование малосигнальных параметров. Определение параметров статических ошибок оу
- •75. Формирование синусоидальных сигналов с повышенной стабильностью амплитуды и линейностью характеристик управления по частоте.
- •76. Теоретические основы управляемых высокочастотных и низкочастотных автогенераторов. Схемотехническая реализация микроэлектронных автогенераторов на высоких и низких частотах.
- •77. Широкополосный амплитудный демодулятор. Преобразователь частоты импульсов в напряжение. Формирователи импульсных сигналов из синусоидальных.
- •78. Прецизионный амплитудный демодулятор. Линейный частотный модулятор и цифровой частотно-фазовый демодулятор в его составе.
- •79. Сущность проблемы индуктивности в микроэлектронике. Реализация индуктивности с помощью аэ. Реализация активных фильтров (аф).
- •80. Методы синтеза аф и их сравнительная оценка. Аппроксимация нормированной ачх фнч. Преобразование ачх фнч в ачх фвч и в ачх полосовых фильтров пф.
- •81. Усилители с ограниченным коэффициентом передачи в аф. Типовые структуры аф на оу. Режекторно-полосовые фильтры и их свойства, ограничительные свойства аф.
42.Стабилизаторы напряжения сн на основе оу. Сн как элемент схемотехники. Однополярные сн с опорными стабилитронами.
В упрощенном виде схема линейного стабилизатора напряжения приведена на Рис. 5.1.
Схема состоит из операционного усилителя в неинвертирующем включении с отрицательной обратной связью по напряжению, источника
опорного напряжения Vref и регулирующего транзистора VT1, включенного последовательно с нагрузкой. Выходное напряжение Vout контролируется с
помощью цепи отрицательной обратной связи, выполненной на резистивном делителе R1\R2. ОУ играет роль усилителя ошибки, в качестве которой здесь выступает разность между опорным напряжением Vref задаваемым источником опорного напряжения (ИОН), и выходным напряжением делителя R1R2.
Схема работает следующим образом. Пусть по тем или иным причинам
(например, из-за уменьшения сопротивления нагрузки или входного нерегулируемого напряжения) выходное напряжение стабилизатора КОит уменьшилось. При этом на входе ОУ появится ошибка AV> 0. Выходное напряжение усилителя возрастет, что приведет к увеличению тока базы, а, следовательно, и тока эмиттера регулирующего транзистора до значения, при котором выходное напряжение возрастет практически до первоначального уровня. В случае идеального операционного усилителя установившееся значение ошибки, совпадающее с дифференциальным входным напряжением ОУ, близко к нулю. Отсюда следует, что
Питание операционного усилителя осуществляется от входного нерегулируемого однополярного напряжения, в данном случае положительного (при регулирующем транзисторе р-п-р-тнпа. все напряжения в схеме должны быть отрицательными). Это накладывает ограничения на допустимый диапазон входных и выходных сигналов, которые в этих условиях должны быть только положительными.
Для схем источников питания такое ограничение не играет роли, поэтому от использования напряжения другой полярности для питания ОУ можно отказаться. Еще одно преимущество подобной схемы состоит в том, что напряжение питания операционного усилителя можно удвоить, не опасаясь превысить его предельно допустимые параметры. Таким образом, стандартные операционные усилители можно использовать в схемах стабилизаторов с входным напряжением до 30 В. Хотя операционный усилитель питается от нестабилизированного входного напряжения KIN, благодаря глубокой отрицательной обратной связи влияние этого фактора на стабильность выходного напряжения невелико.
Для случаев, когда требуется два симметричных относительно общей точки стабилизированных напряжения (например, ±15 В для питания операционных усилителей) выпускаются ИМС, содержащие два стабилизатора— на положительное и отрицательное напряжение, например NE5554 (отечественный аналог — КР142ЕН6). Упрощенная схема внутренней структуры такого стабилизатора приведена на Рис. 5.4а, а типовая схема его включения — на Рис. 5Л6.
Канал стабилизации отрицательного напряжения является независимым.
Дифференциальный усилитель ДУ2 управляет регулирующим транзистором VT2
так, чтобы выполнялось соотношение
Усилитель ДУ1 с помощью транзистора VT1 стремится поддержать потенциал точки соединения резисторов R2 и R4 нулевым, что при выполнении условия R2 = R4 обеспечивает равенство положительного и отрицательного выходных напряжений. Подключая дополнительные резисторы между соответствующими выходами микросхемы, можно независимо подстроить баланс выходных напряжений и их величину.