Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химико-термическая обработка стали.doc
Скачиваний:
64
Добавлен:
21.09.2019
Размер:
5.89 Mб
Скачать

Глава 1. Физико-химические основы процессов химико-термической обработки

Процессы химико-термической обработки включают три основные стадии: процессы, протекающие во внешней среде, на границе металл — среда насыщения и процессы диффузии в глубь металла.

При наличии газовой смеси, используемой для насыщения, процессы, протекающие во внешней среде, характеризуются гомогенными обменными реакциями между компонентами этой смеси

Н2О + СО = СО2 + Н2; (1)

СН4 + Н2О = СО + ЗН2, (2)

идущими при газовой цементации, или реакциями ассоциации

2H2 + О2 = 2Н2 О; (3)

3H2+N2=2NH2. )

Реакция (4) характерна для процесса азотирования. При наличии жидких солевых растворов также протекают гомогенные реакции типа

2NaCN +О2=2NaCNO; (5)

BaCl2 + 2NaCN = 2NaCl + Ba (СМ)2; (6)

Na2B4O7= Na2О + 2В2О3 (7)

(первые две реакции протекают в процессе цианирования, последняя — борирования).

При наличии твердых смесей, применяющихся для насыщения, также протекает ряд химических реакций, однако уже в этом случае они в основном являются гетерогенными по своей сущности, так как идут на поверхности твердых частиц:

СО2+Ств=2СО; (8)

6НС1 + 2А1 = 2А1С1з + ЗНз (9)

и далее

А1С1з+2А1=3А1С1. (10)

Реакция (8) характерна для цементации в твердом карбюризаторе, содержащем древесный уголь; реакции (9) и (10) являются промежуточными в процессе алитирования в твердых смесях алюминий (ферроалюминий) —хлористый аммоний NН4Cl.

При наличии многокомпонентных смесей вероятность протекания каждой из возможных реакций определяется, как известно, сравнительным уровнем свободной энергии Гиббса G; наиболее вероятна та реакция, которая имеет минимум свободной энергии.

Если рассмотреть состояние реакции, при котором реагенты и продукты реакции находятся в равновесии друг с другом, то константа равновесия (постоянная величина для данной температуры), в частности реакции (1), выражается как

К=

или

К=

где а — термодинамическая активность компонента смеси, откуда

G= - RTlnK.

Скорость реакции определяется скоростью уменьшения концентрации реагирующих веществ, которая для реакций первого порядка при постоянной температуре пропорциональна концентрации, т.е.

v=-dC/dt=kC

где k-константа скорости реакции, температурная зависимость которой выражается в виде уравнения Аррениуса

k=k0exp(-Q/RT),

где Q-энергия активации реакции.

Для реакции второго порядка

v= - dC/dt = kCaCb при Сав, v=kC2.

Таким образом, процессы во внешней среде при химико-термической обработке определяются термодинамикой и кинетикой химических реакций.

Рассмотренные реакции, протекающие вне непосредственной зоны поверхности насыщаемой детали, казалось бы, являются только побочными или промежуточными, однако в целом ряде случаев они все же существенно влияют на дальнейшее протекание процесса. Если они являются промежуточными и эта стадия является лимитирующей для всех имеющие место реакций, то это отрицательно сказывается на кинетике всего процесса насыщения в целом; поэтому для того, чтобы ускорить эти реакции, в твердые смеси, например, вводят добавки-активаторы, усиливающие процессы катализа во внешней среде. В газовых смесях обычно рассмотренные гомогенные реакции все же чрезвычайно быстрые из-за достаточно быстрой взаимной диффузии в газах. Однако это же является причиной того, что футеровка печей, материал муфелей печей может воздействовать, и чрезвычайно активно, на газовую фазу. В частности, металлический муфель может служить катализатором для протекания уже не гомогенных, а гетерогенных реакций типа (4), (8), снижая тем самым общую концентрацию активных атомов (ионов) тех компонентов, которые далее взаимодействуют с поверхностью. Шамотная пористая кладка печей, содержащая адсорбированные газы, и подсосы воздуха также оказывают чрезвычайно активное воздействие на изменение газовой фазы, приводя к окислительным процессам типа реакций (2), (3), (8) и выводя из внешней зоны химических реакций необходимые для дальнейшего насыщения компоненты.

Второй основной стадией является химическая реакция на самой поверхности металла с одновременной адсорбцией газов или металлов в виде атомов или ионов - хемосорбция.

Накопление вещества на поверхности вследствие ионного взаимодействия происходит вследствие стремления поверхностной энергии сделаться возможно меньше. Адсорбция положительна, если концентрация растворимого вещества на поверхности больше, чем в объеме, и отрицательная, если эта концентрация меньше. В частности, для реакции растворения молекулярного азота N22[N]pacтв, вследствие того, что

С=Н—ТS, получаем

Hраств=H1-H2;

Sраств=S1-S2.

Рис. 1. Уровни энтальпии и изменения энтальпии при растворении азота

На рис. 1,а представлена диаграмма энтальпии, соответствующая случаю, когда образование раствора сопровождается уменьшением энтальпии и Нраств — отрицательная величина. Это означает, что во время растворения Na при постоянной температуре и давлении выделяется тепло. На рис. 1,6 показан случаи десорбции.

Связь между величиной адсорбции Г и поверхностным натяжением с, представляющим избыток свободной энергии на 1 см2 поверхностного слоя, представляется уравнением Гиббса в виде

Г=-

где  — химический потенциал данного компонента

i=0+RTln ai, di =RT