
- •Предмет и задачи генетики
- •2. История развития и задачи генетики, дифференциация ее на самостоятельные области науки.
- •Особенности гибридологического анализа, моногибридное скрещивание.
- •4. Моно-, ди-, три- и полигибридное скрещивание.
- •5. Статистический характер расщеплений, метод 2.
- •6. Законы Менделя. Условия их реализации.
- •8. Первый закон Менделя
- •Гладкие семена Расщепление в f2 по фенотипу 3:1, следовательно признак наследуется моногенно (моногибридное скрещивание).
- •12. Реципрокные скрещивания, их роль в генетическом анализе.
- •13. Возвратные скрещивания, их роль в генетическом анализе.
- •14. Типы определения пола у растений и животных.
- •15.Способы хромосомного определения пола.
- •16. Гетерохромосомы.
- •17. Половой хроматин и его роль в диагностике наследственных заболеваний.
- •18. Генетическая детерминация пола.
- •19. Гипотезы, объясняющие механизм дифференциации пола.
- •20. Детерминация, дифференциация, определение и переопределение пола в онтогенезе
- •23. Особенности наследования признаков сцеп с полом
- •25. Крисс-кросс наследование и его нарушение при нерасхождении половых хромосом
- •26. Признаки ограниченные полом и зависящие от пола
- •27. Наследование сцепленных генов
- •28. Линейное расположение генов в хром. Его доказательство
- •29. Сила сцепления генов ее определение
- •30. Определение силы сцепления 3ех генов.Правило 3ех точек
- •31. Механизмы кроссинговера. Двойной кроссинговер, интерференция, коэффициент коинциденции.
- •34. Физические и генетические карты генов и хромосом.
- •35. Ген и фен. Проявление генотипа в фенотипе
- •36. Специфика проявления гена (признаки гена).
- •37. Типы взаимодействия генов.
- •38. Плейотропное действие генов.
- •39. Взаимодействие аллеломорфных генов.
- •40. Кооперация.
- •41.Комплиментарность.
- •43.Криптомерия.
- •44.Полимерия. Количественные признаки.
- •45.Отличие количественных признаков от качественных
- •46. Молекулярные механизмы взаимодействий генов
- •48. Нехромосомная наследственность, ее типы.
- •49. Дифференциация ядерной и нехромосомной наследственности.
- •50. Цмс, ее причины, механизмы и роль в селекции.
- •Детерминированные модели
- •Стохастические модели
- •54. Генетика популяций и эволюция
- •61. Генные мутации, их частота, механизм.
- •62. Мутагены. Мутагенез
- •63. Хромосомные мутации, их типы и причины появления.
- •64. Проявления в мейозе и генетические последствия хромосомных мутаций.
- •65. Геномные мутации. Полиплоидия. Роль.
- •66. Анеуплоидия (гетероплоидия), ее типы, роль в эволюции и использование в селекции
- •67. Молекулярные основы наследственности.
- •68. Доказательства генетической роли днк.
- •69. Трансформация у про- и эукариот
- •70. Первичная и вторичная структура днк
- •Денатурация, ренатурация и гибридизация нуклеиновых кислот
- •Три фракции днк эукариот, их локализация в хромосомах и функции.
- •Молекулярная организация хромосом.
- •78. Экспериментальные доказательства вырожденности кода
- •79. Экспериментальные доказательства неперекрываемости кода.
- •80. Экспериментальные доказательства отсутствия внутригенной пунктуации в коде.
- •82.Молекулярные механизмы репликации днк. Репликон про- и эукариот.
- •83.Строение и функционирование репликативной вилки.
- •85. Молекулярные механизмы рекомбинации
- •84.Молекулярные механизмы репарации днк.
- •87.Процессинг различных рнк. Сплайсинг. Созревание м-рнк.
- •88.Адаптерные функции т-рнк и их роль в реализации генетического кода.
- •90 Цистрон. Функциональный критерий аллелизма.
- •93. Рестрикционный анализ, рестрикционные карты, их роль и возможности метода
- •94.Построение рестрикционных карт
- •95.Секвенирование днк (энзиматический метод).
8. Первый закон Менделя
Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.
При скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей
Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.
При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).
9. Закон расщепления, или второй закон Менделя: при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.
Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.
Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.
10. Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.
11. Типы скрещиваний. Основы гибридологического анализа.
Для установления доминантного признака скрещивают родителей с константным проявлением альтернативных признаков (гомозиготы):
Р ♀ х ♂
гладкие семена
морщинистые семена

F1 (Аа) - гладкие семена – доминантный признак
Для установления типа наследования скрещивают гибриды F1:
Аа х Аа