Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мегашпоры!!!.docx
Скачиваний:
58
Добавлен:
21.09.2019
Размер:
366.92 Кб
Скачать
  1. Молекулярная организация хромосом.

Нуклеосомиая нить. Этот уровень организации хроматина обеспечивается четырьмя видами нуклеосомных гистонов: Н2А, Н2В, НЗ, Н4. Они образуют напоминающие по форме шайбу белковые тела — коры, состоящие из восьми молекул (по две молекулы каждого вида гистонов) (рис. 3.46). Молекула ДНК комплектируется с белковыми корами, спирально накручиваясь на них. При этом в контакте с каждым кором оказывается участок ДНК, состоящий из 146 пар нуклеотидов (п.н.). Свободные от контакта с белковыми телами участки ДНК называют связующими или линкерными. Они включают от 15 до 100 п.н. (в среднем 60 п.н.) в зависимости от типа клетки.Отрезок молекулы ДНК длиной около 200 п. н. вместе с белковым кором составляет нуклеосому. Благодаря такой организации в основе структуры хроматина лежит нить, представляющая собой цепочку повторяющихся единиц — нуклеосом (рис. 3.46, Б). В связи с этим геном человека, состоящий из 3 · 109 п. н., представлен двойной спиралью ДНК, упакованной в 1,5 · 107 нуклеосом. Вдоль нуклеосомной нити, напоминающей цепочку бус, имеются области ДНК, свободные от белковых тел. Эти области, расположенные с интервалами в несколько тысяч пар нуклеотидов, играют важную роль в дальнейшей упаковке хроматина, так как содержат нуклеотидные последовательности, специфически узнаваемые различными негистоновыми белками.В результате нуклеосомной организации хроматина двойная спираль ДНК диаметром 2 нм приобретает диаметр 10—11 нм. Хроматиновая фибрилла. Дальнейшая компактизация нуклеосомной нити обеспечивается пистоном HI, который, соединяясь с линкерной ДНК и двумя соседними белковыми телами, сближает их друг с другом. В результате образуется более компактная структура, построенная, возможно, по типу соленоида. Такая Хроматиновая фибрилла, называемая также элементарной, имеет диаметр 20—30 нм (рис. 3.47)Интерфазная хромонема. Следующий уровень структурной организации генетического материала обусловлен укладкой хроматиновой фибриллы в петли. В их образовании, по-видимому, принимают участие негистоновые белки, которые способны узнавать специфические нуклеотидные последовательности вненуклеосомной ДНК, отдаленные друг от друга на расстояние в несколько тысяч пар нуклеотидов. Эти белки сближают указанные участки с образованием петель из расположенных между ними фрагментов хроматиновой фибриллы (рис. 3.48). Участок ДНК, соответствующий одной петле, содержит от 20 000 до 80 000 п. н. Возможно, каждая петля является функциональной единицей генома. В результате такой упаковки Хроматиновая фибрилла диаметром 20—30 нм преобразуется в структуру диаметром 100—200 нм, называемую интерфазной хромонемой. Отдельные участки интерфазной хромонемы подвергаются дальнейшей компактизации, образуя структурные блоки, объединяющие соседние петли с одинаковой организацией (рис. 3.49). Они выявляются в интерфазном ядре в виде глыбок хроматина. Возможно, существование таких структурных блоков обусловливает картину неравномерного распределения некоторых красителей в метафазных хромосомах, что используют в цитогенетических исследованиях (см. разд. 3.5.2.3 и 6.4.3.6).Метафазная хромосома. Вступление клетки из интерфазы в митоз сопровождается суперкомпактизацией хроматина. Отдельные хромосомы становятся хорошо различимы. Этот процесс начинается в профазе, достигая своего максимального выражения в метафазе митоза и анафазе (см. разд. 2.4.2). В телофазе митоза происходит декомпак-тизация вещества хромосом, которое приобретает структуру интерфазного хроматина. Описанная митотическая суперкомпактизация облегчает распределение хромосом к полюсам митотического веретена в анафазе митоза.

  1. Постулаты матричной теории Крика. Д

Двойная спираль, структурная модель (гипотеза) дезоксирибонуклеиновой кислоты (ДНК), согласно которой молекула ДНК состоит из двух антипараллельных полинуклеотидных цепей, образующих правильную правозакрученную перевитую спираль и удерживаемых вместе водородными связями за счёт взаимодействия пар азотистых оснований. Предложена в 1953 Дж. Уотсоном и Ф. Криком. «Чтобы придти к этому правильному решению, потребовалось найти такую конфигурацию, которая была бы стереохимически наиболее выгодной и в то же время не противоречила бы данным рентгеноструктурного анализа» (Дж. Уотсон). Создание модели было подготовлено работами М. Уилкинса и Р.Франклин (получивших в 1950—52 высококачественные рентгенограммы ДНК), Л. Полинга (создавшего в 1951 теорию, позволявшую предсказывать вид рентгенограмм для различных спиральных структур), А. Тодда и его сотрудников (выяснивших в 1952 природу химических связей между нуклеотидами, из которых построена ДНК), Э. Чаргаффа (установившего в 1947—50 соотношение азотистых оснований в ДНК). Модель Уотсона—Крика позволила предсказать возможный механизм полуконсервативной матричной редупликации ДНК, общий принцип кодирования и транскрипции генетической информации, некоторые молекулярные механизмы мутационного процесса. Позднее в многочисленных исследованиях основные положения и следствия из модели Уотсона—Крика получили экспериментальное подтверждение. Уточнения коснулись более точного описания геометрических параметров и конформационных возможностей двойной спирали при различных условиях. В связи с обнаружением значительной конформационной подвижности структуры ДНК не раз поднимался вопрос о степени соответствия модели Уотсона—Крика структуре нативной ДНК. Предлагались другие гипотетические модели ДНК, например, неперевитая зигзагообразная модель ДНК, имеющая на границах поворотов-зигзагов право- и левозакрученные участки полинуклеотидных цепей. Существование левозакрученной, то есть Z-ДНК, на отдельных участках генома подтверждено экспериментально в работах А. Рича. Тем не менее, нет оснований сомневаться в том, что модель Уотсона—Крика в основных чертах правильно описывает структуру ДНК не только in vitro, но и in vivo. Создание модели Уотсона—Крика послужило мощным толчком к развитию молекулярной биологии, начало которой нередко датируют 1953 годом.

  1. Генетический код и его параметры. Универсальность кода. Кодон.

  1. Генетический код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв. Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства. Реализация генетической информации в живых клетках (то есть синтез белка, кодируемого геном) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза мРНК на матрице ДНК) и трансляции генетического кода в аминокислотную последовательность (синтез полипептидной цепи на мРНК). Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трёх последовательных нуклеотидов. Набор из трёх нуклеотидов называется триплетом. Принятые сокращения, соответствующие аминокислотам и кодонам. Свойства: 1. Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

  2. Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно.

  3. Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

  4. Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин)[1]

  5. Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.

  6. Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).

  7. Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

Кодон - (кодирующий тринуклеотид) — единица генетического кода, тройка нуклеотидных остатков (триплет) в ДНК или РНК, обычно кодирующих включение одной аминокислоты. Последовательность кодонов в гене определяет последовательность аминокислот в полипептидной цепи белка, кодируемого этим геном.

  1. Экспериментальные доказательства триплетности кода.

Ф. Криком с сотрудниками были получены прямые экспериментальные До­казательства триплетности кода при изучении мутации r II фа-га Т4, поражающего кишечную палочку.

Обозначим сочетание из трех пар нуклеотидов как abc, Да-лее допустим, что такие триплеты повторяются последовательно в отрезке молекулы ДНК:

abc        abc        abc        abc ...

Представим себе, что произошла мутация, например, истая-ка И лишнего нуклеотида а (указано стрелкой), тогда весь после-дающий  порядок считывания («текста») триплетов нарушится,

1 Изображение одних объектов посредством других называют в кибернеесли код считывается слева направо, т. е. всегда в одном на­правлении, тройками:

\ abcaabcabcabc^abc   aab   cab         cab ...

Допустим, что после этого где-то недалеко вправо от первона­чальной мутации возникла новая мутация, заключающаяся в выпадении одного какого-нибудь основания, например с (ука­зано стрелкой):

t               !

abcaabcab abt:->- abc     aab     cab

 abc

В данном случае нарушение «текста» имеет место только на участке между двумя мутациями (указано стрелками), на всем остальном протяжении сохраняется прежний порядок считыва­ния. Если данная часть гена, в которую входит несколько изме­ненных триплетов, выполняет какую-нибудь не очень ответст­венную функцию, то можно представить, что нарушение кода на каком-то небольшом участке не скажется заметным образом на конечном результате. Особи, несущие два таких изменения, бу­дут иметь фенотип, приближающийся к дикому типу, что и было показано экспериментально.

Если код действительно является триплетным, то комбинации двух вставок оснований (или двух выпадений), в отличие от предыдущего случая, должны всегда давать мутантный фе­нотип. Это также подтверждено экспериментально. Если у фага Т4 дикого типа последовательность нуклетидов (2-я строчка) и определяемых ими аминокислот (1-я строчка) такая:

Лиз

Сер

Про

Сер

Лей

Асп

Ала

АЛА

АГУ

ЦЦА

УЦА

ЦУУ

ААУ '

ГЦУ,

то при вставке двух нуклеотидов Г и У (отмечено скобкой)  получится следующая последовательность:

ААА

АГУ

ГУЦ

ЦАУ

ЦАЦ

УУА

АУГ

Лиз

Сер

Вал

Гис

Гис

Лей

Мет.

В соответствии с этим изменится и аминокислотный состав бел­ка (нижняя строчка), что и было зарегистрировано как мутация.Итак, результаты скрещивания во всех случаях соответство­вали заранее предсказанным, что и явилось подтверждением гипотезы о триплетности кода.