Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Alina_Otrokhova[1].doc
Скачиваний:
25
Добавлен:
20.09.2019
Размер:
3.6 Mб
Скачать

«Вычисление производных» 10 класс.

Цели урока:

- Обобщить и оценить знания учащихся по данной теме

- Научить работать с математическим пакетом Maple - Проверить умения учащихся применять формулы и правила вычисления производных

-Развивать мышление, речь, умение комментировать, тренировать память

- Воспитывать трудолюбие, чувство товарищества и взаимопомощи

- Прививать интерес к предмету путем дружеского соперничества в командах

Методы и приемы: словесный, наглядный. По типу: урок обобщения и систематизации знаний. Оборудование: раздаточный материал (разноуровневые карточки с практическими заданиями, листы учета знаний), плакаты с теоретическим материалом в схемах и таблицах, карточки с основными формулами, компьютер.

Ход урока 1 ЭТАП. Организационный момент Эпиграфом к сегодняшнему уроку будут слова Ньютона При изучении наук примеры не менее поучительны, нежели правила” и слова Ломоносова “Примеры учат больше, чем теория”.

2 Этап. Работа в Maple Определение производной и полного дифференциала

Если f(x) непрерывная функция аргумента х, то производная этой функции

    (4.1)

Как известно, значение производной геометрически характеризуется наклоном касательной к графику f(х) в точке x=0. Простейший способ наблюдать построение касательной к заданной точке функции заключается в применении функции showtangent из пакета student. Например, команды

> with(student): showtangent(sin(x), x = 1.7);

строят график синусоиды и касательной к ней в точке х=1.7.

Функции дифференцирования diff и Diff

Для вычисления производных Maple имеет следующие основные функции:

diff(a, x1, х2, ..., xn)

diff(a, [x1, х2, ..., хn])

Diff(a, x1, х2, ..., xn)

Diff(a, [x1, х2, ..., xn])

Здесь а — дифференцируемое алгебраическое выражение, в частности, функция f(x1, х2, хn) ряда переменных, по которым производится дифференцирование. Функция Diff является инертной формой вычисляемой функции diff и может использоваться для естественного воспроизведения производных в документах.

Первая из этих функций (в вычисляемой и в инертной форме) вычисляет частные производные для выражения а по переменным х1, х2, …, хn. В простейшем случае diff(f(x),x) вычисляет первую производную функции f(x) по переменной х. При n, большем 1, вычисления производных выполняются рекурсивно, например, diff(f(x), х, у) эквивалентно diff(diff(f(x), х), у). Оператор $ можно использовать для вычисления производных высокого порядка. Для этого после имени соответствующей переменной ставится этот оператор и указывается порядок производной. Например, выражение diff(f(x),x$4) вычисляет производную 4-го порядка и эквивалентно записи diff(f(x),x,x,x,x). A diff(g(x,y),x$2,y$3) эквивалентно diff(g(x,y),x,x,y,y,y).

Примеры визуализации и вычисления производных (файл diff):

> restart;

> Diff(a*x^n,x)=diff(а*х^n,х);

> Diff(a*sin(b*x),x)=diff(a*sin(b*x),x);

> Diff([sin(x),х^n,ехр(a*x)], x)=diff([sin(x),x^n, exp(a*x)], x);

> Diff(а*х^n,x$3)=diff(а*х^n,x$3);

> Diff([х^2,х^3,х^n],x)=diff([х^2,х^3,х^n],x);

> simplify(%);

Как видно из приведенных примеров, функции вычисления производных могут использоваться с параметрами, заданными списками.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]