Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УП ТВН.doc
Скачиваний:
180
Добавлен:
19.09.2019
Размер:
53.46 Mб
Скачать

6.5. Профилактические испытания и диагностика изоляции оборудования высокого напряжения

Цель профилактических испытаний - своевременное обнаружение дефектов в изоляции, возникших по случайным причинам в процессе эксплуатации и сокращающих ресурс оборудования, а также дефектов, развившихся вследствие нормального старения изоляции. В современной системе профилактических испытаний используются:

  • испытания приложением высокого напряжения,

  • неразрушающие электрические методы испытаний;

  • неразрушающие неэлектрические методы контроля;

  • электрические методы контроля при рабочем напряжении.

Профилактические испытания высоким напряжением. Применение этого метода ограничивается возможностями создания транспортабельных источников высокого напряжения требуемой мощности и опасностью неконтролируемого повреждения изоляции высоким испытательным напряжением.

В настоящее время профилактические испытания высоким напряжением проводят для изоляции крупных вращающихся машин, кабельных линий, а также для оборудования до 10 кВ. Изоляция статорных обмоток турбо- и гидрогенераторов испытывается ежегодно переменным напряжением 1,5 , а при более редком контроле - до 1,7 . Допускается применение постоянного испытательного напряжения, значение которого должно быть в 1,6 раза выше испытательного напряжения промышленной частоты. Достоинствами постоянного испытательного напряжения являются существенно меньшая мощность испытательной установки, возможность измерений токов утечки, которые дают полезную информацию о состоянии изоляции, а также значительно меньшая, чем при переменном испытательном напряжении, опасность повреждения изоляции.

Изоляция кабельных линий испытывается практически только постоянным, высоким напряжением.

Неразрушающие электрические методы испытаний. К этой группе методов относятся измерения значений tg при напряжении значительно меньше рабочего, а также методы, в которых используются явления абсорбции зарядов (миграционной поляризации), характерные для неоднородной (комбинированной) изоляции. Важно не только абсолютное значение tg, но и его стабильность во времени. Как правило, по значению tg удается выявить распределенные дефекты, например увлажнение изоляции.

Внешними проявлениями абсорбционных процессов в изоляции являются измерение сопротивления утечки изоляции во времени и зависимость емкости изоляции от частоты.

Достоинствами этих методов являются простота выполнения измерений, недостатками - необходимость вывода оборудования из работы, слабая связь измеряемых величин с фактической электрической прочностью изоляции, а также сильное влияние на результаты измерений температуры изоляции.

Неразрушающие неэлектрические методы контроля. Среди многих возможных неэлектрических методов контроля (акустических, оптических, химических и др.) в настоящее время получили широкое применение и показали высокую эффективность методы контроля изоляции маслонаполненного оборудования, основанные на анализе проб масла. Эти методы применимы для многих видов оборудования: силовых и измерительных трансформаторов, шунтирующих реакторов, вводов высокого напряжения, маслонаполненных кабелей. Достоинство этих методов в том, что они не требуют вывода из работы проверяемого оборудования.

Для выявления достаточно грубых дефектов изоляции пробы масла подвергаются простому химическому анализу, определению электрической прочности и tg.

Наиболее совершенным является контроль по составу и концентрации газов, растворенных в масле. В этом случае из проверяемого трансформатора берут две-три пробы масла. Далее анализ газов из проб масла проводят методом газовой хромотографии: определяют концентрации водорода, метана, этилена, этана, ацетилена, окиси и двуокиси углерода и других.

Установлено, что по составу и концентрациям газов, растворенных в масле, можно достаточно достоверно судить о характере дефекта, а по динамике изменения концентраций - о степени опасности этого дефекта.

Особая ценность этого метода состоит в его высокой чувствительности: обнаруживаются газы с объемными концентрациями более . Благодаря этому дефекты могут быть выявлены на самых ранних стадиях.

Методы контроля изоляции при рабочем напряжении. Все рассмотренные ранее методы пригодны для организации только периодического контроля изоляции, эффективность которого значительно снижается при увеличении интервала времени между испытаниями, а сокращение этих интервалов времени ограничивается возможностями вывода оборудования из работы и ростом трудозатрат на проведение испытаний. В связи с этим большое внимание в последние годы уделяется разработке методов и аппаратуры для автоматического непрерывного контроля изоляции при рабочем напряжении. Основу этих методов составляют измерения диэлектрических характеристик (неравновесно-компенсационый, мостовой, ваттметровый методы) и регистрация ЧР.

Диагностика изоляции оборудования высокого напряжения.

Профилактические испытания позволяют выявить дефекты, возникающие при старении изоляции. В настоящее время от понятия “профилактические испытания” приходят к понятию “система контроля и диагностики в процессе эксплуатации”. До конца 90-х годов понятие “профилактические испытания” жило десятками лет и себя оправдывало. Сейчас ситуация усугубилась, так как оборудование устарело и возникла необходимость более частого контроля изоляции. Сначала пытались это делать во время текущего ремонта, но это было неудобно, скорость развития дефекта не совпадала с периодами до ремонта оборудования. Возникла необходимость создания системы контроля и диагностики. Система включает в себя:

– алгоритм диагностики, основанный на диагностической модели;

- диагностическую модель: показатели диагностики, модель диагностики, средства диагностики (пример диагностической модели в таблице 6.1);

– руководящие документы (объем и нормы испытаний ЭО). Они были введены в начале 90-х годов и ознаменовали переход к ремонту по необходимости (текущая диагностика). В соответствии с РД виды испытаний обозначаются:

П – при вводе в эксплуатацию;

К – после капитального ремонта;

Т – после текущего ремонта;

М – в межремонтный период.

Таблица 6.1

Пример диагностической модели

Линейный

тарельчатый

изолятор

Вид дефекта

Проявление дефекта

Показатели

Модель диагностики

Средства диагностики

ПС

(подвесной стеклянный)

Пробой под шапкой

Осыпание стеклянной тарелки

Отсутствие стеклянной тарелки

Осмотр

Персонал

ПФ

(подвесной фарфоровый)

Пробой под шапкой

Потеря электричес-кой прочности

R=0

U=0

Замер падения напряжения на изоляторе U

Измерительная штанга + персонал высокой категории

Вопросы для самоконтроля:

  1. Какова цель приемо-сдаточных испытаний изоляционных конструкций?

  2. Какие дефекты изоляционных конструкций можно считать сосредоточенными, а какие распределенными?

  3. С какой целью проводят испытания изоляции повышенным напряжением?

  4. Какие методы испытаний можно считать неразрушающими?

  5. Какие дефекты приводят к появлению в изоляции частичных разрядов?

  6. Назовите методы, позволяющие выявлять дефекты оборудования без его вывода из работы?

МОДУЛЬ 3

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]