
- •Техника высоких напряжений: Изоляция и перенапряжения. Учеб. Пособие для студентов заочной формы образования. Казань: Казан. Гос. Энерг. Ун-т, 2012. - с.: ил.
- •1. Изоляция и перенапряжения или техника высоких напряжений
- •1.1. Применение высоких напряжений для передачи электрической энергии
- •1.2. Изоляция электрических установок
- •1.3. Перенапряжения, воздействующие на электроустановки
- •1.4. Работа изоляции в условиях длительного воздействия рабочего напряжения
- •2. Внешняя изоляция высоковольтного электрооборудования электроэнергетических систем
- •2.1. Общая характеристика внешней изоляции
- •2.2. Регулирование электрических полей во внешней изоляции
- •2.3. Диэлектрики, используемые во внешней изоляции
- •2.4. Назначение и типы изоляторов.
- •2.5. Электрофизические процессы в газах
- •2.6. Лавина электронов и условие самостоятельности разряда
- •2.7. Время разряда и вольт-секундные характеристики воздушных промежутков
- •2.8. Разряд в длинных воздушных промежутках
- •3. Разряд вдоль поверхности твердого диэлектрика
- •3.1. Механизм перекрытия изолятора в сухом состоянии
- •3.2. Механизм перекрытия изолятора при загрязненной поверхности и под дождем
- •3.3. Выбор изоляторов воздушных лэп и ру
- •4. Основные виды и электрические характеристики внутренней изоляции электроустановок
- •4.1. Общие свойства внутренней изоляции
- •4.2. Виды внутренней изоляции и материалы, используемые для их изготовления
- •4.3. Зависимость электрической прочности внутренней изоляции от длительности воздействия напряжения.
- •5. Кратковременная и длительная электрическая прочность внутренней изоляции электроустановок
- •5.1. Понятие “кратковременная электрическая прочность” внутренней изоляции и поведение изоляции при воздействии перенапряжений
- •5.2. Длительная электрическая прочность внутренней изоляции
- •5.3. Срок службы изоляции
- •5.4. Старение изоляции под воздействием частичных разрядов
- •5.5. Тепловое старение внутренней изоляции
- •5.6. Старение изоляции при механических нагрузках
- •5.7. Увлажнение как форма старения изоляции
- •5.8. Допустимые рабочие нагрузки на внутреннюю изоляцию
- •6. Система контроля и диагностика внутренней изоляции
- •6.1. Системы контроля качества изоляционных конструкций
- •6.2. Испытания изоляции повышенным напряжением
- •6.3. Испытания напряжением промышленной частоты
- •6.4. Измерения характеристик и испытания изоляции при повышенном напряжении
- •6.5. Профилактические испытания и диагностика изоляции оборудования высокого напряжения
- •7. Молния как источник грозовых перенапряжений, защита от прямых ударов молнии, молниеотводы
- •7.1. Физика разряда молнии
- •Общая характеристика молний
- •Электризация частиц и разделение зарядов в грозовых облаках
- •Процесс развития молнии
- •Основные электрические характеристики молнии
- •7.2. Принцип действия молниеотводов
- •7.13. Зона защиты двухстержневого молниеотвода
- •7.16. Крепление тросов на двухцепных металлических опорах вл 500 кВ
- •7.17. Двухцепные одностоечные опоры с двумя тросами
- •Вопросы для самоконтроля
- •Защитные аппараты
- •Защитные промежутки.
- •Трубчатые разрядники.
- •Вентильные разрядники.
- •Длинно-искровые разрядники.
- •Вопросы для самопроверки:
- •Молниезащита зданий и различных сооружений
- •7.6. Молниезащита в электроэнергетических системах
- •Общее и допустимое число отключений воздушных линий.
- •Применение защитных аппаратов для защиты воздушных линий.
- •Молниезащита подстанций от прямых ударов молнии.
- •Параметры импульсов грозовых перенапряжений, набегающих на подстанцию.
- •Зависимость максимального напряжения на электрооборудовании подстанций от крутизны набегающего импульса перенапряжения и от расстояния до защитного аппарата. Интервал координации изоляции.
- •Эффективность грозозащиты подстанции
- •Особенности молниезащиты подстанций и станций различного номинального напряжения
- •Вопросы для самопроверки:
- •8. Внутренние перенапряжения
- •8.1 Общая характеристика внутренних перенапряжений
- •8.2. Коммутационные перенапряжения
- •8.3. Квазистационарные перенапряжения на линиях электропередачи в симметричных режимах
- •8.4. Феррорезонансные перенапряжения при неполнофазных режимах
- •9. Влияние режима нейтрали сети на уровень перенапряжений
- •9.1. Режимы нейтрали электрических сетей
- •9.2. Резистивное заземление нейтрали
- •10. Способы защиты от перенапряжений
- •10.1. Система защиты от перенапряжений
- •10.2. Ограничители перенапряжений
- •10.3. Выбор ограничителей перенапряжений (опн) Условия надежной защиты с помощью опн
ФГБОУ ВПО «КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ
ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ»
Кафедра электрических станций
Лопухова Т.В., Усачев А.И., Чернов К.П.
ТЕХНИКА ВЫСОКИХ НАПРЯЖЕНИЙ
Изоляция и перенапряжения
Казань 2012
Л
776
УДК 621.31.048
Лопухова Т.В., Усачев А.И., Чернов К.П.
Техника высоких напряжений: Изоляция и перенапряжения. Учеб. Пособие для студентов заочной формы образования. Казань: Казан. Гос. Энерг. Ун-т, 2012. - с.: ил.
В учебном пособии изложены основные теоретические положения, а также практические аспекты дисциплины «Изоляция и перенапряжения» (в новой редакции ФГОС «Техника высоких напряжений»). Рассмотрены различные виды изоляции электроустановок высокого напряжения, воздействующие на нее перенапряжения и способы защиты от них.
Учебное пособие предназначено для студентов заочной формы обучения электроэнергетических специальностей и может быть использовано студентами всех форм обучения изучающих учебную дисциплину «Изоляция и перенапряжения» («Техника высоких напряжений»).
__________________
РЕЦЕНЗЕНТЫ
д-р.тех.наук профессор А.И.Федотов
канд.техн.наук Б. Ахмеров
Казанский государственный энергетический университет, 2012 г.
МОДУЛЬ 1
1. Изоляция и перенапряжения или техника высоких напряжений
1.1. Применение высоких напряжений для передачи электрической энергии
Применение высоких напряжений для передачи электрической энергии на большие расстояния играет важную роль в развитии мировой электроэнергетики и нашей страны. Наиболее высокое напряжение, используемое в мире в настоящее время 750 кВ (Россия, Украина) и 765 кВ (США, Канада, Бразилия). В Европейской объединенной энергосистеме (UCPTE) наивысшее напряжение 400 кВ. В мире была сооружена лишь одна линия ультравысокого напряжения (УВН) 1150 кВ Экибастуз – Кокчетав – Кустанай – Челябинск (Казахстан – Россия). Все оборудование этой уникальной электропередачи было разработано в нашей стране и выпущено отечественной промышленностью. В настоящее время 500 км этой линии эксплуатируется под напряжением 500 кВ.
Рост напряжений, который происходил в течение всего периода развития электроэнергетики, определяется экономическими факторами. Стоимость линии электропередачи (ЛЭП) примерно пропорциональна номинальному напряжению, в то время как её пропускная способность пропорциональна квадрату этого напряжения. Себестоимость передачи электроэнергии снижается при повышении номинального напряжения, уменьшаются и удельные капиталовложения.
Экономические факторы также способствовали сооружению мощных электростанций, поскольку удельные капиталовложения и металлоёмкость для крупных электростанций значительно ниже, чем для мелких.
Необходимость передачи электроэнергии на большие расстояния связана с удалением электростанций от центров потребления, что вызвано повышением экологических требований к электростанциям, прежде всего необходимостью сокращения занимаемых под них земельных площадей и усложнением их размещения вблизи крупных промышленных центров. Это, в свою очередь, влечет за собой увеличение длины линий электропередачи. Для того чтобы снизить потери электроэнергии при передаче по длинным линиям определенной мощности необходимо повысить напряжение и уменьшить ток. В России передача электроэнергии на значительные расстояния осуществляется по линиям с номинальными напряжениями 110, 220, 330, 500, и 750 кВ. В таблице 1.1. представлены пропускная способность линий различных номинальных напряжений и их длина в зависимости от номинального напряжения.
Надежная работа электрических систем высокого напряжения в основном определяется изоляцией и теми напряжениями, которые на эту изоляцию воздействуют. Повышения напряжения, которые могут быть опасными для изоляции, называются перенапряжениями. Использование высоких напряжений в электрических системах связано с проблемой обеспечения безаварийной работы изоляции всех элементов электрической системы. Рассматриваемая проблема получила название “Техника высоких напряжений в электроэнергетике”
Таблица 1.1.
Пропускная способность электропередачи 110-1150 кВ [ ЭТС, Т.3, с. 239]
-
Напряжение
линии, кВ
Натуральная мощность, МВт,
при волновом сопротивлении, Ом
Передаваемая
мощность на
одну цепь, МВт
Длина
передачи,
км
400
300-314
250-275
110
30
__
__
25-50
50-150
220
120
160
__
100-200
150-250
330
270
350
__
300-400
200-300
500
600
__
900
700-900
800-1200
750
__
__
2100
1800-2200
1200-2000
1150
__
__
5200
4000-6000
2500-3000
Техника высоких напряжений (ТВН) в настоящее время представляет собой науку о характеристиках вещества и процессах в нем при экстремальных электромагнитных воздействиях - высоких напряжениях и сильных токах, а также о технологическом использовании этих процессов. Один из основных разделов ТВН посвящен свойствам и характеристикам изоляционных конструкций электрооборудования высокого напряжения и условиям их надежной эксплуатации при воздействии рабочего напряжения, грозовых и внутренних перенапряжений. Учебная дисциплина, соответствующая этому разделу называется «Изоляция и перенапряжения». Структура этой дисциплины достаточно разнородна и представляет собой два больших раздела «Изоляция электрических установок высокого напряжения» и «Перенапряжения в электрических системах». Эти разделы связаны между собой задачей координации изоляции, которая заключается в приведении в соответствие уровней электрической прочности изоляции и уровней воздействующих на электроустановки перенапряжений. На схеме (рис.1) представлена структура учебной дисциплины, которая поможет студентам составить общее представление о содержании этой дисциплины.