Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК ТА и МЛ ИНЭК.doc
Скачиваний:
16
Добавлен:
17.09.2019
Размер:
370.18 Кб
Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Пермский государственный педагогический университет»

Математический факультет

Кафедра высшей математики

Пастухова Г.В.

Учебно-методический комплекс дисциплины

МАТЕМАТИЧЕСКАЯ ЛОГИКА И ТЕОРИЯ АЛГОРИТМОВ

050100 – Педагогическое образование

Профиль подготовки – Информатика и ИКТ

Квалификаций (степень) выпускника

Бакалавр педагогического образования

Форма обучения очная

Пермь, 2012

  1. Цель дисциплины.

В дисциплину «Математическая логика и теория алгоритмов» вошли и одна из древнейших математических наук – логика (первое дошедшее до нас сочинение «Аналитики» Аристотеля (382-322 гг. до н.э.) принадлежит позднегреческой эпохе) и совсем юная по меркам истории – теория алгоритмов, которая не насчитывает и ста лет. Обе эти науки, не смотря на столь значительную разницу в возрасте, имеют много общего – они обосновывают саму математику, ее строение и особенности формализаций различных математических систем.

Программа дисциплины отражает цель курса – знакомство с формализацией математического языка, которая рассматривается в данном курсе значительно глубже, чем в курсах алгебры, геометрии и математического анализа, и охватывает также логические средства. В рамках этого курса изучается, прежде всего, язык логики, освещаются современные подходы к формализации и аксиоматизации различных математических дисциплин, в частности затрагиваются такие фундаментальные понятия, как понятие непротиворечивости и полноты математической теории, независимости системы аксиом.

Дисциплина включает в себя два основных раздела: «Математическая логика» и «Теория алгоритмов». В вводном разделе программы рассматриваются основные этапы становления математической логики как особой математической дисциплины, освещается ее роль в решении проблем обоснования математики, в развитии современной вычислительной техники.

Раздел «Математическая логика» в свою очередь состоит из подразделов «Алгебра высказываний», которая изучает высказывания, формулы, их истинностные значения, тождественно ложные, истинны и выполнимые формулы, равносильность формул, приведение формул с помощью равносильных преобразований к нормальным формам. Овладение техникой алгебры высказываний позволить студентам решать алгебраическим методом логические задачи, в частности проверять правильность некоторых рассуждений, а также составлять и упрощать релейно-контактные схемы с заданными условиями работы.

Пример формальной аксиоматической системы рассматривается в разделе «Исчисление высказываний». Особое внимание в этом разделе следует уделить доказательству выводимости в построенном исчислении формул (теорем).

Далее вводится понятие предиката, определяются операции навешивания кванторов общности и существования, обобщаются понятия формулы и ее интерпретации. Возможности языка алгебры предикатов иллюстрируются разнообразными примерами при рассмотрении арифметической и геометрической моделей.

Формализованное исчисление предикатов рассматривается как расширение исчисления высказываний.

Все вышеуказанные подразделы (алгебры и исчисления высказываний и предикатов) являются примерами построения той или иной формализованной системы. Принципы построения и характеристики (полнота, разрешимость, противоречивость) составляющие метатеорию формальных систем подытоживают данный раздел. Также даются примеры и понятия неклассических видов логики как нечеткая и алгоритмическая и принципы логического программирования.

Второй раздел «Теория алгоритмов» является теоретической основой программирования и посвящен формализации понятия «алгоритма» в виде машин Тьюринга и рекурсивных функций. Начинается раздел с изучения возникшей потребности в строгом определении «алгоритма». Далее рассматривается интуитивное понятия «алгоритма», приводятся примеры.

Подраздел «Рекурсивные функции» посвящен базовым функциям и операциям, формируется понятие и примеры частично-рекурсивных, рекурсивных и общерекурсивных функций, доказывается рекурсивность основных арифметических функций, формулируется тезис Черча. Также даются понятия алгоритмически неразрешимых, легкоразрешимых и трудноразрешимых задач и оценки (меры) сложности алгоритмов.

Аналогично строится формализация понятия алгоритма в виде машин Тьюринга, рассматривается ее устройство, действия над машинами, связь с рекурсивными функциями, финалом является тезис Тьюринга, проводиться аналогия с тезисом Черча.