- •Класифікація елементарних частинок. Закони збереження і межі їх застосування. Елементарні частинки і фундаментальні взаємодії.
- •Науково-методичний аналіз структури і змісту курсу фізики 8 класу.
- •Ядерні сили та їх властивості. Моделі ядра. Ядерні реакції поділу і синтеїу. Ланцюгова реакція. Ядерна енергерика і екологія. Проблеми термоядерних реакцій.
- •Експериментальні методи ядерної фізики Методи реєстрації елементарних частинок. Прискорювачі заряджених частинок Поглинена доза випромінюваний, її біологічна дія. Способи захисту від випромінювання
- •Інтенсифікація навчальної діяльності учнів на уроці фізики в умовах кабінетної системи. Урок фізики в світлі ідей розвиваючого і виховуючого навчання.
- •Радіоактивність. Закон радіоактивного розпаду. Альфа-, бета-, гамма- випромінювання. Дозиметрія і захист від випромінювання.
- •Система дидактичних засобів з фізики. Комплексне використання дидактичних засобів на уроках фізики.
- •Шкільна лекція з фізики.
- •Опис стану частинки за допомогою квантових чтсел. Спін. Стан електрона в багагтоелектронному атомі. Періодична система Менделєєва.
- •Науково-методичний аналіз і методика вивчення основних понять теми «Електромагнітні коливання»
- •Досліди Резенфорда.Атом водню.Спонтаннє і вимушене випромінювання світла атомами. Квантові генератори.
- •Особливості роботи в школах і класах з поглибленим вивченням фізики.
- •Шкільна лекція з фізики.
- •Хвильова функція. Рівняння Шредінгера. Частинка в потенціальній ямі.
- •Корпусколярно-хвильовий дуалізм. Постулати Бора. Досліди Франка-Герца, Штерна і Герлаха. Співвідношення невизначеностей Гейзенберга.
- •Методика вивчення закону Кулона.
- •Фотоефект і ефект Комптона
- •Диференціація навчання фізики: педагогічна доцільність можливі форми. Профільне і поглиблене вивчення фізики.
- •Оптичне випромінювання. Енергія електромагнітної хвилі. Фотометрія. Енергетичні і світлові величини та одиниці їх вимірювання. Закони фотометрії.
- •Позакласна робота з фізики та форми її проведення. Гурткова робота. Фізичні вечори, олімпіади. Екскурсії з фізики.
- •Домашні лабораторні дорсліди і роботи з фізики і методика їх виконання учнями. Обробка результатів експерименту при виконанні лабораторних робіт і робіт фізпрактикуму.
- •Поляризація світла. Поляризація при відбиванні від діелектрика. Закон Брюстера і Малюса. Поляризаційні прилади та їх застосування.
- •Дидактичні і методичні основи здійснення міжпредметних зв’язків. Роль міжпредметних зв’язків в формуванні учнів понять, навичок і умінь.
- •Зв'язок курсу фізики з хімією
- •Зв'язок курсу фізики з біологією
- •Хвильова оптика. Когерентні і некогерентні джерела. Інтерференція, дифракція світла та їх застосування. Голографія.
- •Значення розв’язування задач з фізики, їх місце в навчально-виховному процесі. Класифікація задач з фізики. Розв’язок задач з фізики як метод навчання.
- •Поширення світла в середовищі. Відбивання і заломлення світла. Розсіювання світла.
- •Геометрична оптика як граничний випадок хвильової оптики. Основні поняття геометричної оптики. Оптичні прилади. Волоконна оптика.
- •Науково-методичний та методологічний аналіз основних питань тем „Теплові явища", „Перший закон термодинаміки". Формуування поняття температура.
- •Перший закон термодинаміки.
- •Формування поняття температура
- •Обладнання кабінету фізики. Використання технічних засобів навчання на уроках фізики.
- •Електромагнітне поле. Система рівнянь Маквелла
- •Узагальнення і систематизація знань з фізики. Фізична картина світу.
- •Закон Біо-Савара-Лапласа.
- •Магнітне поле в речовині. Діа- пара- і феромагнетики та їх властивості
- •Зміст і методика вивчення теми ‘Тиск рідин та газів’ в 7 класі.
- •Електричний струм у металах. Електронна провідність металів. Залежність опору металів від температури. Надпровідність
- •Змінний струм. Активний, ємнісний і індуктивний опори в колах змінного струму.
- •Робота вчителя фізики як дослідника. Вивчення рівня знань, умінь і навичок учнів з фізики.
- •Узагальнення і систематизація знань з фізики. Фізична картина світу.
- •Формування наукового світогляду учнів.
- •Електричний заряд. Закон збереження електричного заряду. Закон Кулона
- •Науково-методичний аналіз змісту теми ‘ Закони руху Нютона’.
- •Тверді тіла. Аморфні і кристалічні тіла. Класифікація кристалів за типом зв’язків. Теплоємність кристалів за Ейнштейном і Дебаєм. Рідкі кристали.
- •Кристалічні і аморфні тіла, класифікація кристалів за типом зв’язків.
- •Теплоємність кристалів.
- •Рідкі кристали.
- •Статистичне тлумачення Розподіл Максвела
- •Контроль знань і вмінь учнів з фізики. Методи і форми контролю.
- •Основні поняття й означення.
- •Навчальний фізичний експеримент, його структура і завдання. Демонстраційний експеримент і дидактичні вимоги до ньго.
- •Фронтальний фізичний експеримент. Лабораторні роботи, фізичний практикум. Домашні експериментальні роботи.
- •Температура.
- •Фізичне значення температури t.
- •Форми організації навчальних занять з фізики.
- •Типи і структура уроків з фізики. Системи уроків фізики. Вимоги до сучасного уроку фізики.
- •Основні положення молекулярно-кінетичіюї теорії.
- •Основне рівняння мкт.
- •Рівняння стану ідеального газу.
- •Науково-методичний аналіз структури і змісту теми ‘ Геометрична оптика’.
- •Відхилення від законів механіки Ньютона
- •Поступати Ейнштейна
- •Перетворення Лоренца
- •Елементи релятивістської динаміки
- •Розвиток мислення учнів на уроках фізики. Активізація пізнавальної діяльності учнів.
- •13. Методи навчання фізики, їх класифікація.
- •Поблемне навчання фізики. Логіка проблемного уроку.
- •Тверде тіло як система матеріальних точок. Центр мас
- •Основне рівняння динаміки обертального руху. Момент інерції
- •Момент імпульсу. Закон збереження моменту імпульсу
- •Засвоєння знань і особливості навчального пізнання. Формування фізичних понять. Плани узагальнюючого характеру для вивчення фізичних явищ і величин.
- •Особливості формування експериментальних вмінь і навичок учнів.
- •Гравітаційне поле
- •Закон всесвітнього тяжіння
- •Маса тіла
- •Планування роботи вчителя фізики. Календарне, тематичне і поурочне планування з фізики.
- •Підготовка вчителя до уроку. Наукова організація праці вчителя фізики.
- •Закон збереження імпульсу
- •Закон збереження енергії в механіці.
- •Фундаментальні фізичні теорії як основа шкільного курсу фізики.
- •Зв’язок навчання фізики з викладанням ін. Предметів. Інтегровані курси.
- •Перший закон Ньютона. Інерціальні системи відліку
- •Другий закон Ньютона. Сила
- •Третій закон Ньютона і закон збереження імпульсу
- •Цілі та завдання навчання фізики. Зміст і структура курсу фізики середньої школи.
- •Простір і час
- •Кінематика матеріальної точки
- •Система відліку.
- •Перетворення Галілея
Білет №1
Класифікація елементарних частинок. Закони збереження і межі їх застосування. Елементарні частинки і фундаментальні взаємодії.
Під елементарними частинками на даному етапі їх пізнання розуміють такі мікрочастинки, про внутрішню структуру яких як об'єднання з інших частинок жодних достовірних даних не існує. Елементарна частинка проявляє себе як одне ціле, хоч має здатність до перетворень і взаємодій з іншими частинками. Перебіг перетворень значною мірою залежить від енергоресурсу частинок реакції. Індивідуальність елементарної частинки зумовлюється тим, що енергія взаємодії її з іншими матеріальними об'єктами значно менша від її власної релятивістської енергії.
Першою елементарною частинною, яку відкрив Дж.Томсон у 1897р., був електрон. У 1919р. Е.Резерфорд виявив частинку, яка входить до складу ядер атомів, – протон. У 1932р. Д.Чедвік відкрив другу складову частинку ядра – нейтрон. У 1905р. А. Ейнштейн увів_у науковий обіг поняття про складову частинку світла – фотон. В 1956р. вже було відомо 30 елементарних частинок; тепер їх налічується понад 350.
Елементарні частинки за масою поділяють на чотири класи: фотони, лептони, мезони, баріони (див. табл. 4). Наведемо їх короткі характеристики.
Фотони. Частинки цього класу є квантами електромагнітного поля. При поширенні проявляють хвильові властивості, а при взаємодії з речовиною – корпускулярні. Маса спокою фотона дорівнює нулю, спін – одиниці. Фотони підлягають статистиці Бозе-Ейнштейна (бозони). Це істинно нейтральні частинки, оскільки збігаються зі своїми античастинками. Фотон достатньої енергії при взаємодії з важким ядром атома може перетворюватися в пару частинок електрон-позитрон; можливий і зворотний процес перетворення.
Лептони. Легкі частинки, до яких входять електрони, позитрони, мюони, нейтрино і антинейтрино електронного та мюонного походження. Лептони утворюються завжди парами, наприклад, пара електрон і позитрон утворюється при анігіляції гамма-фотона; при розпаді π+-мезона одержується пара µ+-мезон і νµ-мезонне нейтрино. Перетворення частинок підлягає закону збереження лептонного заряду. Лептоном притаманний півцілий спін s=1/2, тому на них поширюється принцип Паулі; вони підлягають квантовій статистиці Фермі-Дірака (ферміони). Усі лептони беруть участь у слабких взаємодіях, а заряджені лептони і в електромагнітних взаємодіях.
3.Мезони – нестабільні елементарні частинки з масою, більшою від маси електрона і меншою від маси протона. Бувають мезони нейтральні і електрично заряджені. Частинки цього класу π-мезони і К-мезони є квантами поля ядерних сил. Вони забезпечують сильну взаємодію між нуклонами в атомних ядрах. Мезони не мають спіна, для них s=0, тому вони не підлягають принципу Паулі: в будь-якому стані може перебувати довільне число мезонів. Мезони підлягають квантовій статистиці Бозе-Ейнштейна (бозони).
4.Баріони. До цього класу частинок входять нуклони і група масивніших частинок – гіперони. Всі баріони проявляють сильні взаємодії і відповідно активно взаємодіють з атомними ядрами. За винятком протона, всі баріони нестабільні. При розпаді баріона, крім інших частинок, обов'язково утворюється новий баріон. Остання особливість розпаду є наслідком закону збереження баріонного заряду.
Спін усіх баріонів півцілий (s=1/2), тому вони підлягають принципу Паулі й квантовій статистиці Фермі-Дірака (ферміони).
Серед сильновзашодіючих частинок виявлено велике число короткоживучих частинок, так званих резонансів. Час життя їх становить 10‑23 ‑10‑22с; деякі з них є бозонами і повинні бути віднесені до класу мезонів, інші резонанси є ферміонами і повинні бути віднесені до класу І гіперонів.
Для опису поведінки елементарних частинок слід враховувати тип взаємодії. Відомі такі чотири типи взаємодій між елементарними частинками: сильні (ядерні), електромагнітні, слабкі й гравітаційні.
Інтенсивність тієї чи іншої взаємодії характеризують певним безрозмірним параметром а, який інакше називають константою взаємодії.
Сильні взаємодії проявляються між адронами – мезонами, нуклонами, гіперонами. Прикладом їх можуть бути вже розглянуті ядерні взаємодії нуклонів, що забезпечуються я-мезонами. Порівняльна константа взаємодії дорівнює І; радіус їхньої дії має порядок розміру ядра – 10і5 м; характерний час життя частинок, що розпадаються в результаті взаємодії (час руху піона на відстані r-10-15 м при максимальній швидкості с=3•108 м/с) ~ 10-23с
Електромагнітні взаємодії – забезпечують зв'язки між зарядженими частинками; вони реалізуються за допомогою електромагнітного поля. Теорією електромагнітної взаємодії є квантова електродинаміка, згідно з якою заряджені частинки взаємодіють за допомогою віртуальних фотонів, якими обмінюються частинки; величина імпульсу фотона p=hν/c
Слабкі взаємодії відповідальні за всі р-розпади ядер, розпади багатьох елементарних частинок, за всі процеси взаємодії нейтрино з речовиною.
Гравітаційні взаємодії з усіх інших тилів фундаментальних взаємодій найслабкіші. Порівняльну константу цієї взаємодії знаходять за виразом ,де r – гравітаційна стала; М – маса нуклона, за підрахунками а =2·10-39. Гравітаційні взаємодії із збільшенням відстані повільно зменшуються, тому радіус їх дії необмежений. Час реалізації взаємодії ~108років. Чим слабкіші взаємодії, тим довший час потрібний для здійснення зумовленої ними реакції. У фізиці мікрочастинок гравітаційними силами нехтують, хоч цієї взаємодії зазнають усі частинки.