
- •Матриці, основні поняття. Різновиди матриць
- •Дії над матрицями. Властивості дій над матрицями
- •Визначники квадратних матриць. Способи обчислення визначників
- •4. Визначник н-го порядку. Теорема Лапласа.
- •5. Визначники. Властивості визначників.
- •6. Мінори та алгебраїчні доповнення елементів
- •7. Обернена матриця. Алгоритм оберненої матриці
- •8. Ранг матриці. Властивості рангу матриці
- •9. Основні поняття системи п лінійних алгебраїчних рівнянь з п змінними. Правило Крамера.
- •10. Матричний метод розв`язання слар. Алгоритм розв`язування системи матричним способом
- •11.Теорема Кронекера-Капеллі. Алгоритм розв’язування слар
- •12. Основні поняття системи m лінійних рівнянь з n змінними.
- •13. Метод Жордана-Гауса. Алгоритм кроку перетворення Жордана-Гаусса
- •14. Основні поняття слар. Системи лінійних однорідних рівнянь.
- •15. Скалярний і векторний добуток. Властивості векторного добутку
- •16. Мішаний добуток, властивості мішаного добутку.
- •17. Векторний простір, його розмірність і базис. Розклад вектора за базисом. Лінійно залежні і лінійно незалежні системи векторів
- •19. Вивести рівняння прямої, що проходить через дві точки і рівняння прямої у відрізках на осях.
- •20. Вивести векторне рівняння прямої та загальне рівняння прямої і його частинні випадки
- •21.Вивести нормальне рівняння прямої та рівняння пучка прямих.
- •22.Кут між двома прямими заданими канонічним рівнянням. Умови паралельності і перпендикулярності прямих.
- •23. Рівняння прямої з кутовим коефіцієнтом. Відстань від точки до прямої
- •24. Кут між прямими, що задані рівнянням з кутовим коефіцієнтом. Умови паралельності і перпендикулярності прямих
- •25. Різновиди рівняння площини у просторі: за трьома точками, у відрізках на осях, нормальне.
- •27. Кут між площинами. Умови паралельності і перпендикулярності двох площин. Відстань від точки до площини
- •29. Кут між прямими в просторі. Кут між прямою і площиною. Умови паралельності і перпендикулярності прямої і площини. Знаходження точки перетину прямої і площини
- •30. Поняття кривих ліній другого порядку. Дослідження рівняння другого порядку. Коло
- •31.Еліпс: означення, рівняння, графік, вершини, півосі, фокуси
- •32.Гіпербола: означення, рівняння, графік, спряжена гіпербола.
- •33.Парабола: означення, рівняння, графік, вершина, фокус.
- •34. Поняття числової послідовності: формула п-го члена, зростаюча спадна, обмежена послідовність.
- •35. Геометрична інтерпретація границі послідовності.
- •37. Нескінченно малі функції в точці і на нескінченності означення, властивості, геометрична інтерпретація означення, приклади
- •38.Нескінченно великі функції в точці і на нескінченності.
- •39. Теорема про зв`язок між нескінченно малими і нескінченно великими функціями. Теорема про зв`язок між нескінченно малими функціями та границею функції
- •41.Властивості функцій, які мають границю в точці
- •42. Властивості границь функцій.
- •45. Неперервність функції в точці: означення Коші та означення в термінах приростів функції та аргументу. Застосування поняття неперервності при обчисленні границь функцій
- •46. Властивості функцій, неперервних на відрізку. Геометрична інтерпретація цих властивостей
- •51. Правила диференціювання сталої, суми, добутку, частки функцій та наслідки з них
- •53. Геометричний зміст похідної. Рівняння дотичної. Поняття нормалі до графіка функції та її рівняння. Економічний зміст похідної
- •4.1.2. Геометричний зміст похідної
- •54. Похідна складної та оберненої функцій
- •55. Диференціювання параметрично заданих функцій
- •62. Застосування правила Лопіталя у невизначеностях виду
- •64. Екстремум функції, необхідна та достатня умови існування екстремуму
- •65. Опуклість та вгнутість графіка функції. Необхідна і достатня умови опуклості (вгнутості) графіка функції
- •66. Точки перегину графіка функції. Необхідна і достатня умови існування точок перегину
- •78.Знаходження найбільшого та найменшого значення функції в області d
- •79.Первісна для заданої функції, її основні властивості
- •80.Невизначений інтеграл і його властивості
- •81.Метод безпосереднього інтегрування невизначених інтегралів
- •82.Знаходження невизначених інтегралів методом заміни змінної
- •83.Знаходження невизначених інтегралів методом інтегрування частинами
- •84.Інтегрування функцій, які містять у знаменнику квадратний тричлен.
- •86.Метод невизначених коефіцієнтів
- •87.Інтегрування функцій, що містять ірраціональності
- •88.Інтегрування тригонометричних функці
- •89.Інтегрування найпростіших раціональних дробів
- •90.Інтегрування найпростіших раціональних дробів
- •91.Визначений інтеграл і його властивості
- •92.Задача, що призводить до поняття визначеного інтеграла
- •93.Формула Ньютона-Лейбніца для обчислення визначених інтегралів
- •102.Метод найменших квадратів
- •103.Поняття ряду. Збіжність ряду та його сума
- •105.Необхідна ознака збіжності ряду
- •106.Еталонні ряли
- •107.Достатні ознаки збіжності додатних числових рядів. Ознака порівняння
- •113.Абсолютна та умовна збіжність рядів
- •114.Функціональні ряди. Основні поняття
- •115.Степеневі ряди. Основні поняття. Теорема Абеля
- •116.Радіус, інтервал, область збіжності ряду
- •117.Ряд Тейлора
- •Використання рядів до наближених обчислень функції
- •Використання рядів до наближених обчислень визначених інтегралів
- •121.Диференціальні рівняння. Основні поняття та означення
- •128.Диференціальні рівняння другого порядку, що допускають пониження порядку
- •129.Рівняння Бернуллі
- •130.Лінійні однорідні диференціальні рівняння другого порядку зі сталими коефіцієнтами
- •131.Лінійні неоднорідні диференціальні рівняння другого порядку із сталими коефіцієнтами
51. Правила диференціювання сталої, суми, добутку, частки функцій та наслідки з них
Основні правила диференціювання
Теорема
1.
Похідна сталої дорівнює нулю, тобто
якщо у
= с,
де с
= const, то
.
Теорема 2.
Похідна алгебраїчної суми скінченної
кількості диференційовних функцій
дорівнює алгебраїчній сумі похідних
цих функцій:
.
Теорема 3. Похідна добутку двох диференційовних функцій дорівнює добутку першого множника на похідну другого плюс добуток другого множника на похідну першого:
.
Теорема 4. Сталий множник можна виносити за знак похідної:
,
де
.
Теорема 5. Якщо
чисельник і знаменник дробу диференційовні
функції (знаменник не перетворюється
в нуль), то
похідна дробу також
дорівнює дробу, чисельник якого є
різницею добутків знаменника на похідну
чисельника і чисельника на похідну
знаменника, а знаменник є квадратом
знаменника початкового дробу
.
Зауваження.
Похідну від функції
,
де
,
зручно обчислювати як похідну від
добутку сталої величини
на функцію u
(x):
.
52.Похідна сталої та функції у=х. Таблиця похідних.
1) Похідна постійної величини C дорівнює нулю,тобто C0
2) Якщо кожна з функцій u(x) та v(x) диференційована в точці x , то добуток цих функцій також має похідну в точці x , причому цю похідну знаходять за формулою
u(x)v(x)u(x)v(x)u(x)v(x)
3) Якщо u(x) та v(x) мають похідні в точці x і v(x)0, то частка цих функцій також має похідну в точці x , яку знаходять за формулою
4)Якщо кожна із функцій f1 (x), f 2 (x),...,f n (x)
(n – скінченне число) диференційована в деякі точці x , то їх алгебраїчна сума також є диференційованою в цій точці, причому похідна алгебраїчної суми цих функцій дорівнює такій самій алгебраїчній сумі їх похідних.
53. Геометричний зміст похідної. Рівняння дотичної. Поняття нормалі до графіка функції та її рівняння. Економічний зміст похідної
4.1.2. Геометричний зміст похідної
Означення. Дотичною до кривої L у точці М називається граничне положення МN січної ММ1 при прямуванні точки М1 по кривій L до точки М (рис. 4.1).
Нехай
крива, задана рівнянням
,
має дотичну в точці М
(х, у).
Позначимо (рис. 4.2) кутовий коефіцієнт
дотичної МN:
.
Надамо в точці х
приросту
,
тоді ордината у
набуде приросту
.
З
випливає, що
.
Коли
,
то
і січна прямує до положення дотичної
МN.
Таким чином,
.
Рис.
4.1 Рис. 4.2
,
то
тобто похідна
чисельно дорівнює кутовому коефіцієнту
дотичної, проведеної до графіка функції
у точці з абсцисою х.
У цьому полягає геометричний зміст
похідної.
Нехай рівняння прямої, що проходить через задану точку М0 (х0; у0) у даному напрямі (рис. 4.4):
,
Оскільки
,
то з виразу (4.2) ді-
станемо рівняння
дотичної у вигляді
.
Нормаллю до графіка функції в точці М0 називається перпендикуляр, проведений до дотичної в цій точці:
Для
пояснення економічного змісту похідної
розглянемо
задачу про продуктивність праці. Нехай
функція
відображає кількість виробленої
продукції u
за час t
і необхідно знайти продуктивність праці
в момент t0.
За період часу від
t0
до
кількість виробленої продукції зміниться
від значення
до значення
;
тоді середня продуктивність праці за
цей період часу
.
Очевидно, що продуктивність праці в
момент t0
можна визначити як граничне значення
середньої продуктивності за період
часу від t0
до
при
,
тобто
.
Таким чином, продуктивність праці є похідна від обсягу виробленої продукції по часу.
Застосування диференціального числення для дослідження економічних об’єктів та процесів на основі аналізу цих граничних величин дістало назву граничного аналізу. Граничні величини характеризують не стан (як сумарна чи середня величини), а процес зміни економічного об’єкта. Таким чином, похідна виступає як швидкість зміни деякого економічного об’єкта (процесу) за часом або відносно іншого об’єкта дослідження. Але необхідно врахувати, що економіка не завжди має змогу використовувати граничні величини у зв’язку з неподільністю багатьох об’єктів економічних розрахунків та перервністю (дискретністю) економічних показників у часі (наприклад, річних, квартальних, мі- сячних та ін.). Водночас у деяких випадках можна знехтувати дискретністю показників і ефективно використовувати граничні величини.