
- •Матриці, основні поняття. Різновиди матриць
- •Дії над матрицями. Властивості дій над матрицями
- •Визначники квадратних матриць. Способи обчислення визначників
- •4. Визначник н-го порядку. Теорема Лапласа.
- •5. Визначники. Властивості визначників.
- •6. Мінори та алгебраїчні доповнення елементів
- •7. Обернена матриця. Алгоритм оберненої матриці
- •8. Ранг матриці. Властивості рангу матриці
- •9. Основні поняття системи п лінійних алгебраїчних рівнянь з п змінними. Правило Крамера.
- •10. Матричний метод розв`язання слар. Алгоритм розв`язування системи матричним способом
- •11.Теорема Кронекера-Капеллі. Алгоритм розв’язування слар
- •12. Основні поняття системи m лінійних рівнянь з n змінними.
- •13. Метод Жордана-Гауса. Алгоритм кроку перетворення Жордана-Гаусса
- •14. Основні поняття слар. Системи лінійних однорідних рівнянь.
- •15. Скалярний і векторний добуток. Властивості векторного добутку
- •16. Мішаний добуток, властивості мішаного добутку.
- •17. Векторний простір, його розмірність і базис. Розклад вектора за базисом. Лінійно залежні і лінійно незалежні системи векторів
- •19. Вивести рівняння прямої, що проходить через дві точки і рівняння прямої у відрізках на осях.
- •20. Вивести векторне рівняння прямої та загальне рівняння прямої і його частинні випадки
- •21.Вивести нормальне рівняння прямої та рівняння пучка прямих.
- •22.Кут між двома прямими заданими канонічним рівнянням. Умови паралельності і перпендикулярності прямих.
- •23. Рівняння прямої з кутовим коефіцієнтом. Відстань від точки до прямої
- •24. Кут між прямими, що задані рівнянням з кутовим коефіцієнтом. Умови паралельності і перпендикулярності прямих
- •25. Різновиди рівняння площини у просторі: за трьома точками, у відрізках на осях, нормальне.
- •27. Кут між площинами. Умови паралельності і перпендикулярності двох площин. Відстань від точки до площини
- •29. Кут між прямими в просторі. Кут між прямою і площиною. Умови паралельності і перпендикулярності прямої і площини. Знаходження точки перетину прямої і площини
- •30. Поняття кривих ліній другого порядку. Дослідження рівняння другого порядку. Коло
- •31.Еліпс: означення, рівняння, графік, вершини, півосі, фокуси
- •32.Гіпербола: означення, рівняння, графік, спряжена гіпербола.
- •33.Парабола: означення, рівняння, графік, вершина, фокус.
- •34. Поняття числової послідовності: формула п-го члена, зростаюча спадна, обмежена послідовність.
- •35. Геометрична інтерпретація границі послідовності.
- •37. Нескінченно малі функції в точці і на нескінченності означення, властивості, геометрична інтерпретація означення, приклади
- •38.Нескінченно великі функції в точці і на нескінченності.
- •39. Теорема про зв`язок між нескінченно малими і нескінченно великими функціями. Теорема про зв`язок між нескінченно малими функціями та границею функції
- •41.Властивості функцій, які мають границю в точці
- •42. Властивості границь функцій.
- •45. Неперервність функції в точці: означення Коші та означення в термінах приростів функції та аргументу. Застосування поняття неперервності при обчисленні границь функцій
- •46. Властивості функцій, неперервних на відрізку. Геометрична інтерпретація цих властивостей
- •51. Правила диференціювання сталої, суми, добутку, частки функцій та наслідки з них
- •53. Геометричний зміст похідної. Рівняння дотичної. Поняття нормалі до графіка функції та її рівняння. Економічний зміст похідної
- •4.1.2. Геометричний зміст похідної
- •54. Похідна складної та оберненої функцій
- •55. Диференціювання параметрично заданих функцій
- •62. Застосування правила Лопіталя у невизначеностях виду
- •64. Екстремум функції, необхідна та достатня умови існування екстремуму
- •65. Опуклість та вгнутість графіка функції. Необхідна і достатня умови опуклості (вгнутості) графіка функції
- •66. Точки перегину графіка функції. Необхідна і достатня умови існування точок перегину
- •78.Знаходження найбільшого та найменшого значення функції в області d
- •79.Первісна для заданої функції, її основні властивості
- •80.Невизначений інтеграл і його властивості
- •81.Метод безпосереднього інтегрування невизначених інтегралів
- •82.Знаходження невизначених інтегралів методом заміни змінної
- •83.Знаходження невизначених інтегралів методом інтегрування частинами
- •84.Інтегрування функцій, які містять у знаменнику квадратний тричлен.
- •86.Метод невизначених коефіцієнтів
- •87.Інтегрування функцій, що містять ірраціональності
- •88.Інтегрування тригонометричних функці
- •89.Інтегрування найпростіших раціональних дробів
- •90.Інтегрування найпростіших раціональних дробів
- •91.Визначений інтеграл і його властивості
- •92.Задача, що призводить до поняття визначеного інтеграла
- •93.Формула Ньютона-Лейбніца для обчислення визначених інтегралів
- •102.Метод найменших квадратів
- •103.Поняття ряду. Збіжність ряду та його сума
- •105.Необхідна ознака збіжності ряду
- •106.Еталонні ряли
- •107.Достатні ознаки збіжності додатних числових рядів. Ознака порівняння
- •113.Абсолютна та умовна збіжність рядів
- •114.Функціональні ряди. Основні поняття
- •115.Степеневі ряди. Основні поняття. Теорема Абеля
- •116.Радіус, інтервал, область збіжності ряду
- •117.Ряд Тейлора
- •Використання рядів до наближених обчислень функції
- •Використання рядів до наближених обчислень визначених інтегралів
- •121.Диференціальні рівняння. Основні поняття та означення
- •128.Диференціальні рівняння другого порядку, що допускають пониження порядку
- •129.Рівняння Бернуллі
- •130.Лінійні однорідні диференціальні рівняння другого порядку зі сталими коефіцієнтами
- •131.Лінійні неоднорідні диференціальні рівняння другого порядку із сталими коефіцієнтами
42. Властивості границь функцій.
1) Якщо х = С – постійна величина, то limCC, тобто, границя постійної величини дорівнює самій постійній.
2) Границя алгебраїчної суми скінченної кількості змінних величин, що мають границі, дорівнює такій самій алгебраїчній сумі границь доданків, тобто lim(x y...z)limxlimy...limz.
3) Границя добутку скінченної кількості змінних величин, що мають границю, дорівнює добутку границь множників.
4) Границя частки від ділення двох змінних величин дорівнює частці від ділення їх границь, якщо тільки границя
дільника не дорівнює нулю.
43.
Розкриття невизначеного вигляду
при застосуванні ірраціональних функцій
та многочленів під час обчислення
границь функцій
Невизначеність
для ірраціональних функцій
Для розв’язування задач у цьому випадку рекомендується звільнитись від тих ірраціональних множників у чисельнику і знаменнику дробового виразу, які перетворюються на нуль при виконанні граничного переходу. Для звільнення від радикалів використовують формули скороченого множення, заміну змінної та інші штучні прийоми
Приклад.
3.
Невизначеність
У цьому випадку і чисельник, і знаменник рекомендується поділити на найбільший степінь змінної, що входить як до знаменника, так і до чисельника.
Приклад.
4.
Невизначеність
Цей тип
невизначеності зводиться до невизначеностей
або
наприклад, зведенням виразу до спільного
знаменника, множенням на спряжений
вираз.
Приклад.
44. Перша і друга важливі границі та наслідки з них
Перша
особлива границя
Границі — наслідки першої особливості границі:
1.
2.
3.
4.
Зауваження. За допомогою першої особливої границі можна досліджувати невизначеності для виразів з тригонометричними функціями.
Друга
особлива границя
Границі — наслідки другої особливої границі:
1.
. 2.
. 3.
.
4.
.
Зауваження: За допомогою другої особливої границі та її на- слідків можна досліджувати невизначеності
45. Неперервність функції в точці: означення Коші та означення в термінах приростів функції та аргументу. Застосування поняття неперервності при обчисленні границь функцій
Функція
називається неперервною
в точці
якщо
Означення. Функція називається неперервною в точці якщо в цій точці нескінченно малому приросту аргументу відповідає нескінченно малий приріст функції, тобто
Означення.
Функція
називається неперервною
в точці
якщо границя функції дорівнює функції
від границі аргументу при
,
тобто
Означення. Функція називається неперервною в точці якщо односторонні границі функції зліва й справа в цій точці існують, рівні між собою і дорівнюють значенню функції у цій точці, тобто:
46. Властивості функцій, неперервних на відрізку. Геометрична інтерпретація цих властивостей
Якщо функція y=f(x) неперервна на відрізку [a;b], то вона обмежена на цьому відрізку
Якщо функція y=f(x) неперервна на відрізку [a;b], то вона досягає на цьому відрізку свого найменшого m і найбільшого М значення.
Якщо функція y=f(x) неперервна на відрізку [a;b], і значення її на кінцях відрізках f(a) i f(b) мають протилежні знаки, то в середині відрізка існує хоча б одна така точка,
, що f(e)=0, тобто крива y=f(x) перетинає вісь Ох хоча б в одній точці