
- •Матриці, основні поняття. Різновиди матриць
- •Дії над матрицями. Властивості дій над матрицями
- •Визначники квадратних матриць. Способи обчислення визначників
- •4. Визначник н-го порядку. Теорема Лапласа.
- •5. Визначники. Властивості визначників.
- •6. Мінори та алгебраїчні доповнення елементів
- •7. Обернена матриця. Алгоритм оберненої матриці
- •8. Ранг матриці. Властивості рангу матриці
- •9. Основні поняття системи п лінійних алгебраїчних рівнянь з п змінними. Правило Крамера.
- •10. Матричний метод розв`язання слар. Алгоритм розв`язування системи матричним способом
- •11.Теорема Кронекера-Капеллі. Алгоритм розв’язування слар
- •12. Основні поняття системи m лінійних рівнянь з n змінними.
- •13. Метод Жордана-Гауса. Алгоритм кроку перетворення Жордана-Гаусса
- •14. Основні поняття слар. Системи лінійних однорідних рівнянь.
- •15. Скалярний і векторний добуток. Властивості векторного добутку
- •16. Мішаний добуток, властивості мішаного добутку.
- •17. Векторний простір, його розмірність і базис. Розклад вектора за базисом. Лінійно залежні і лінійно незалежні системи векторів
- •19. Вивести рівняння прямої, що проходить через дві точки і рівняння прямої у відрізках на осях.
- •20. Вивести векторне рівняння прямої та загальне рівняння прямої і його частинні випадки
- •21.Вивести нормальне рівняння прямої та рівняння пучка прямих.
- •22.Кут між двома прямими заданими канонічним рівнянням. Умови паралельності і перпендикулярності прямих.
- •23. Рівняння прямої з кутовим коефіцієнтом. Відстань від точки до прямої
- •24. Кут між прямими, що задані рівнянням з кутовим коефіцієнтом. Умови паралельності і перпендикулярності прямих
- •25. Різновиди рівняння площини у просторі: за трьома точками, у відрізках на осях, нормальне.
- •27. Кут між площинами. Умови паралельності і перпендикулярності двох площин. Відстань від точки до площини
- •29. Кут між прямими в просторі. Кут між прямою і площиною. Умови паралельності і перпендикулярності прямої і площини. Знаходження точки перетину прямої і площини
- •30. Поняття кривих ліній другого порядку. Дослідження рівняння другого порядку. Коло
- •31.Еліпс: означення, рівняння, графік, вершини, півосі, фокуси
- •32.Гіпербола: означення, рівняння, графік, спряжена гіпербола.
- •33.Парабола: означення, рівняння, графік, вершина, фокус.
- •34. Поняття числової послідовності: формула п-го члена, зростаюча спадна, обмежена послідовність.
- •35. Геометрична інтерпретація границі послідовності.
- •37. Нескінченно малі функції в точці і на нескінченності означення, властивості, геометрична інтерпретація означення, приклади
- •38.Нескінченно великі функції в точці і на нескінченності.
- •39. Теорема про зв`язок між нескінченно малими і нескінченно великими функціями. Теорема про зв`язок між нескінченно малими функціями та границею функції
- •41.Властивості функцій, які мають границю в точці
- •42. Властивості границь функцій.
- •45. Неперервність функції в точці: означення Коші та означення в термінах приростів функції та аргументу. Застосування поняття неперервності при обчисленні границь функцій
- •46. Властивості функцій, неперервних на відрізку. Геометрична інтерпретація цих властивостей
- •51. Правила диференціювання сталої, суми, добутку, частки функцій та наслідки з них
- •53. Геометричний зміст похідної. Рівняння дотичної. Поняття нормалі до графіка функції та її рівняння. Економічний зміст похідної
- •4.1.2. Геометричний зміст похідної
- •54. Похідна складної та оберненої функцій
- •55. Диференціювання параметрично заданих функцій
- •62. Застосування правила Лопіталя у невизначеностях виду
- •64. Екстремум функції, необхідна та достатня умови існування екстремуму
- •65. Опуклість та вгнутість графіка функції. Необхідна і достатня умови опуклості (вгнутості) графіка функції
- •66. Точки перегину графіка функції. Необхідна і достатня умови існування точок перегину
- •78.Знаходження найбільшого та найменшого значення функції в області d
- •79.Первісна для заданої функції, її основні властивості
- •80.Невизначений інтеграл і його властивості
- •81.Метод безпосереднього інтегрування невизначених інтегралів
- •82.Знаходження невизначених інтегралів методом заміни змінної
- •83.Знаходження невизначених інтегралів методом інтегрування частинами
- •84.Інтегрування функцій, які містять у знаменнику квадратний тричлен.
- •86.Метод невизначених коефіцієнтів
- •87.Інтегрування функцій, що містять ірраціональності
- •88.Інтегрування тригонометричних функці
- •89.Інтегрування найпростіших раціональних дробів
- •90.Інтегрування найпростіших раціональних дробів
- •91.Визначений інтеграл і його властивості
- •92.Задача, що призводить до поняття визначеного інтеграла
- •93.Формула Ньютона-Лейбніца для обчислення визначених інтегралів
- •102.Метод найменших квадратів
- •103.Поняття ряду. Збіжність ряду та його сума
- •105.Необхідна ознака збіжності ряду
- •106.Еталонні ряли
- •107.Достатні ознаки збіжності додатних числових рядів. Ознака порівняння
- •113.Абсолютна та умовна збіжність рядів
- •114.Функціональні ряди. Основні поняття
- •115.Степеневі ряди. Основні поняття. Теорема Абеля
- •116.Радіус, інтервал, область збіжності ряду
- •117.Ряд Тейлора
- •Використання рядів до наближених обчислень функції
- •Використання рядів до наближених обчислень визначених інтегралів
- •121.Диференціальні рівняння. Основні поняття та означення
- •128.Диференціальні рівняння другого порядку, що допускають пониження порядку
- •129.Рівняння Бернуллі
- •130.Лінійні однорідні диференціальні рівняння другого порядку зі сталими коефіцієнтами
- •131.Лінійні неоднорідні диференціальні рівняння другого порядку із сталими коефіцієнтами
86.Метод невизначених коефіцієнтів
87.Інтегрування функцій, що містять ірраціональності
При
інтегруванні виразів, що містять
ірраціональності методом підстановки,
зводять підінтегральну функцію до
раціонального дробу. Якщо підінтегральна
функція є раціональним дробом відносно
,
де а – дробове число, то в цьому випадку
вводять нову змінну
,
де q – спільний знаменник дробових
показників степеня змінної х.
)
2)
3)
Підінтегральна
ф-ія
після
виділення повного квадрата і заміни
раціоналізується
тригонометричними підстановками.
88.Інтегрування тригонометричних функці
Розглянемо R(sin x,cos x)dx, де R – раціональна ф-ія відносно sin, cos, тобто над sin, cos викон. лише арифметичні дії та піднесення до цілого степеня. Існують такі підстановки, що за їх допомогою інтеграл R(sinx,cosx)dx завжди може бути зведений до інтеграла від раціональної ф-ії R*(t)dt, загальна схема інтегрування якої розроблена.
1) Універсальна
тригонометрична підстановка
.
На практиці універсальну тригонометричну
підстановку використовують, якщо sin
x, cos x входять
в невисокому степені, інакшфе
підрахунки будуть складні.
2) Підінтегральна ф-ія – непарна відносно sin x, тоді роблять підстановку cos x = t.
3) Підінтегральна ф-ія – непарна відносно cos x раціоналізується за допомогою підстановки sin x = t.
4) Підінтегральна ф-ія R(sin x, cos x) – парна по sinx, cosx сукупно, тобто R(-sinx,-cosx)=R(sinx,cosx). В цьому випадку використовують підстановку tgx=t або ctgx=t.
5) Підінтегральна ф-ія R(tgx) раціоналізується підстановкою tgx=t.
В інтегралах sin2nxcos2mxdx рекомендується скористатися формулами зниження степеня.
89.Інтегрування найпростіших раціональних дробів
Відношення
двох многочленів
називається
раціональним
дробом.
Означення: Раціональний дріб правильний, якщо степінь многочлена в чисельнику менший степеня многочлена в знаменнику, тобто n<m. Якщо ж nm, то дріб неправильний.
Найпростіші раціональні дроби (4 типи):
1.
2.
3.
4.
де k2, kN, D=p2-4q<0
Теорема: Будь-який правильний раціональний нескоротний дріб можна представити у вигляді скінченого числа найпростіших дробів використовуючи такі правила:
1) Якщо Qm(x)=(x-a)kgm-k(x), то:
2) Якщо Qm(x)=(x2+px+q)kgm-2k(x), то:
де Аі,
Ві,
–
деякі коефіцієнти,
та
правильні
раціональні дроби.
Методика інтегрування раціональних ф-ій:
1. Якщо підінтегральна ф-ія – неправильний раціональний дріб, то за допомогою ділення його розкладають на суму многочлена і правильного раціонального дробу.
2. Знаменник правильного раціон. дробу розкладають на множники. По вигляду знаменника, правильний раціон. дріб представляють у вигляді найпростіших дробів, використовуючи метод невизначених коефіцієнтів.
3. Інтегрують цілу частину і найпростіші дроби.
90.Інтегрування найпростіших раціональних дробів
Відношення двох многочленів називається раціональним дробом.
Означення: Раціональний дріб правильний, якщо степінь многочлена в чисельнику менший степеня многочлена в знаменнику, тобто n<m. Якщо ж nm, то дріб неправильний.
Найпростіші раціональні дроби (4 типи):
1. 2. 3. 4.
де k2, kN, D=p2-4q<0
Теорема: Будь-який правильний раціональний нескоротний дріб можна представити у вигляді скінченого числа найпростіших дробів використовуючи такі правила:
1) Якщо Qm(x)=(x-a)kgm-k(x), то:
2) Якщо Qm(x)=(x2+px+q)kgm-2k(x), то:
де Аі, Ві, – деякі коефіцієнти, та правильні раціональні дроби.
Методика інтегрування раціональних ф-ій:
1. Якщо підінтегральна ф-ія – неправильний раціональний дріб, то за допомогою ділення його розкладають на суму многочлена і правильного раціонального дробу.
2. Знаменник правильного раціон. дробу розкладають на множники. По вигляду знаменника, правильний раціон. дріб представляють у вигляді найпростіших дробів, використовуючи метод невизначених коефіцієнтів.
3. Інтегрують цілу частину і найпростіші дроби.