Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекції з Фізики сонячних елементів.doc
Скачиваний:
4
Добавлен:
02.09.2019
Размер:
993.28 Кб
Скачать

1.Фізичні процеси в затемненому р-n-переході

В монокристалі германію, кремнію чи іншого напівпровідника, легованого при вирощуванні можна створити такий розподіл домішки, що одна частина кристалу буде напівпровідником n-типу, а інша – напівпровідником р-типу. Таким чином, в деякій досить тонкій області (на границі розділу двох напівпровідників) може спостерігатися перехід від n-типу до р-типу. Ця область розглядається як контакт електронного і діркового напівпровідників.

    1. Розподіл густини об’ємного заряду та концентрації носіїв заряду в р-n-переході

Е

x

n

лектронно-дірковим переходом називають шар напівпровідника, який розміщується по обидві сторони від границі розділу р- і n-областей, який збіднений основними носіями заряду і який являє собою запірний шар. В залежності від характеру розподілу домішки розрізняють два ідеальних випадки – різкий і плавний р-n-переходи. В різкому переході концентрація акцепторів і донорів змінюється стрибкоподібно на границі розділу р- і n-областей, а в плавному переході їх концентрація є лінійною функцією відстані (рис.1). Різкий р-n-перехід можна створювати в кристалі при вплавленні домішки. Error: Reference source not found

Рис. 1.1 Розподіл концентрації акцепторів Na і донорів Nd в несиметричному різкому (а) і плавному (б) р-n-переході

Оскільки на границі розділу областей існує градієнт концентрації вільних носіїв заряду, то буде проходити процес дифузії електронів в р-область і дірок в n-область. Це призводить до збіднення основними носіями заряду при- граничних шарів і до виникнення об’ємних зарядів протилежного знаку. В різкому р-n-переході утворюються збіднені шари ступінчатого об’ємного заряду, в плавному – лінійного об’ємного заряду (рис.2). На рис. 1 і 2 показано випадок, коли концентрація акцепторів в дірковій області більша ніж концентрація донорів в електронній області.

Рис. 1.2 Розподіл густини об’ємного заряду ρ в несиметричному різкому (а) і плавному (б) р-n-переходах

Відповідно товщини шарів знаходяться в оберненому співвідношенні. Можливе і обернене співвідношення концентрацій донорів і акцепторів. Сума об’ємних зарядів в р- і n-областях рівна нулю, тобто площі під кривими ρ(x) рівні між собою.

В теорії р-n переходу зазвичай вважають, що концентрація рівноважних носіїв заряду в напівпровіднику поза р-n-переходом рівна концентрації домішок, тобто останні повністю іонізовані. Рівноважна концентрація електронів nn0 в нейтральній n-області, рівна NД, а рівноважна концентрація дірок рр0 в нейтральній р-області рівна Na:

Відповідно товщини шарів знаходяться в оберненому співвідношенні. Можливе і обернене співвідношення концентрацій донорів і акцепторів. Сума об’ємних зарядів в р- і n-областях рівна нулю, тобто площі під кривими ρ(x) рівні між собою.

В теорії р-n переходу зазвичай вважають, що концентрація рівноважних носіїв заряду в напівпровіднику поза р-n-переходом рівна концентрації домішок, тобто останні повністю іонізовані. Рівноважна концентрація електронів nn0 в нейтральній n-області, рівна NД, а рівноважна концентрація дірок рр0 в нейтральній р-області рівна Na:

. (1.1)

Для рівноважних концентрацій завжди справедливий закон діючих мас, тому, якщо р-n-перехід створений в монокристалі, то добуток концентрацій основних і не основних носіїв заряду в обох частинах р-n-переходу одинаковий і рівний ni2 для даного напівпровідника при даній температурі:

. (1.2)

Область р-n-переходу збіднена основними носіями заряду. На рис. 1.3 зображені криві концентрацій основних і неосновних носіїв заряду по обидві сторони від різкого р-n-переходу і в самому переході.

Error: Reference source not found

dn

dp

x

Рис. 1.3 Розподіл концентрації основних і неосновних носіїв зарядів в несиметричному різкому р-n-переході

Для різкого переходу об’ємний заряд в електронній частині визначається як постійна величина:

; (1.3)

для плавного – відповідно у вигляді лінійної функції:

, (1.4)

де Аn – градієнт концентрації домішок (донорів), які всі є іонізованими.

В дірковій частині р-n переходу маємо:

; (1.5)

. (1.6)

Формули відповідають ідеальному випадку, в дійсності ж об’ємний заряд може дещо відрізнятися від цих значень (див. рис. 1.2).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]