Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
_eBook__-_Math_Calculus_Bible.pdf
Скачиваний:
8
Добавлен:
23.08.2019
Размер:
1.23 Mб
Скачать

8.6. POWER SERIES

347

8.6Power Series

Definition 8.6.1 If a0, a1, a2, . . . is a sequence of real numbers, then the

series Pakxk is called a power series in x. A positive number r is called

k=1

the radius of convergence and the interval (−r, r) is called the interval of convergence of the power series if the power series converges absolutely for all x in (−r, r) and diverges for all x such that |x| > r. The end point x = r is

included in the interval of convergence if Pakrk converges. The end point

k=1

x = −r is included in the interval of convergence if the series P(−1)kakrk

k=1

converges. If the power series converges only for x = 0, then the radius of convergence is defined to be zero. If the power series converges absolutely for all real x, then the radius of convergence is defined to be ∞.

X

Theorem 8.6.1 If the series cnxn converges for x = r 6= 0, then the

n=1

X

series cnxn converges absolutely for all numbers x such that |x| < |r|.

n=0

X

Proof. Suppose that cnrn converges. Then, by the Divergence Test,

n=0

lim cnrn = 0.

n→∞

For = 1, there exists some natural number m such that for all n ≥ m,

|cnrn| < = 1.

Let

M = max{|cnrn| + 1 : 1 ≤ n ≤ m}.

Then, for each x such that |x| < |r|, we get |x/r| < 1 and

 

 

 

 

 

 

 

 

x

 

n

n=0

|cnxn| = n=0 |cnrn| · r

 

X

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

n

 

 

 

 

n=0 M r

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

 

 

 

 

=

 

 

 

 

 

< ∞.

 

 

 

 

1 −

xr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

348

CHAPTER 8. INFINITE SERIES

 

 

X

By the comparison test the series

|cnxn| converges for x such that |x| <

 

 

 

n=0

 

|r|. This completes the proof of Theorem 8.6.1.

 

 

 

 

 

 

X

 

Theorem 8.6.2 If the series

cn(x − a)n converges for some x − a =

 

n=0

 

 

 

 

 

 

r 6= 0, then the series

X

 

 

 

cn(x − a)n converges absolutely for all x such that

|x − a| < |r|.

n=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

cnun converges for some u = r. Then

Proof. Let x−a = u. Suppose that

 

 

n=0

 

 

 

 

 

 

 

X

 

 

by Theorem 8.6.1, the series

cnun converges absolutely for all u such that

 

 

n=0

 

 

 

 

 

|u| < |r|. It follows that the series

X

 

cn(x − a)n converges absolutely for all

n=0

x such that |x − a| < |r|. This completes the proof of the theorem.

X

Theorem 8.6.3 Let cnxn be any power series. Then exactly one of the

n=0

following three cases is true.

(i)The series converges only for x = 0.

(ii)The series converges for all x.

(iii)There exists a number R such that the series converges for all x with |x| < R and diverges for all x with |x| > R.

Proof. Suppose that cases (i) and (ii) are false. Then there exist two

 

X

cnpn converges and

X

nonzero numbers p and q such that

cnqn diverges.

n=0

 

n=0

By Theorem 8.6.1, the series converges absolutely for all x such that |x| < |p|.

Let

X

A = {p : cnpn converges}.

n=0

8.6. POWER SERIES

349

The set A is bounded from above by q. Hence A has a least upper bound, say

R. Clearly |p| ≤ R < q and hence R is a positive real number. Furthermore,

X

cnxn converges for all x such that |x| < R and diverges for all x such that

n=0

|x| > R. We define R to be 0 for case (i) and R to be ∞ for case (ii). This completes the proof of Theorem 8.6.3.

X

Theorem 8.6.4 Let cn(x − a)n be any power series. Then exactly one

n=0

of the following three cases is true:

(i)The series converges only for x = a and the radius of convergence is 0.

(ii)The series converges for all x and the radius of convergence is .

(iii)There exists a number R such that the series converges for all x such that |x − a| < R and diverges for all x such that |x − a| > R.

 

 

 

 

Proof. Let u = x − a and use Theorem 8.6.3 on the series

cnun. The

 

 

 

n=0

 

details of the proof are left as an exercise.

 

X

 

 

 

 

 

cnrn converges for |x| < R, then

Theorem 8.6.5 If R > 0 and the series

 

n=0

 

 

 

 

X

 

 

 

 

 

 

the series

ncnxn−1, obtained by term-by-term di erentiation of

cnxn,

 

n=1

 

 

n=0

 

X

 

 

X

converges absolutely for |x| < R.

Proof. For each x such that |x| < R, choose a number r such that |x| < r <

 

 

X

n

is bounded.

R. Then

cnxn converges, nlim cnrn = 0 and hence {cnrn}n=0

n=0

→∞

 

There exists some M such that |cnr | ≤ M for each natural number n. Then

 

 

 

 

 

1

 

x

n

1

n=1

|ncnxn−1| = n=1 n|cnrn| ·

 

r

· r

 

 

 

X

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

x

n

−1

 

 

 

 

 

 

 

r

n=1 n r

 

.

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

350

 

 

 

 

CHAPTER 8. INFINITE SERIES

 

 

x n

1

 

 

x

 

 

X

r

converges by the ratio test, since

r

< 1. It follows

The series n=1 n

 

 

 

 

 

 

 

 

 

 

 

n

1

 

 

 

 

 

 

X

 

converges absolutely for all x such that |x| < R. This

that

ncnx

 

 

n=1

 

 

 

 

 

 

 

 

 

completes the proof of this theorem.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

Theorem 8.6.6 If R > 0 and the series

cn(x − a)n converges for all x

n=0

X

such that |x−a| < R, then the series cn(x−a)n may be di erentiated with

n=0

respect to x any number of times and each of the di erential series converges for all x such that |x − a| < R.

X

Proof. Let u = x−a. Then cnun converges for all u such that |u| < R. By

n=0

X

Theorem 8.6.5, the series ncnun−1 converges for all u such that |u| < R.

n=1

This term-by-term di erentiation process may be repeated any number of times without changing the radius of convergence. This completes the proof of this theorem.

Theorem 8.6.7 Suppose that R > 0 and f(x) =

 

n=0 cnxn and R is radius

such that |x| < R.

 

P

 

n

 

 

 

 

 

x

 

 

x

of convergence of the series

 

 

 

 

 

 

 

 

 

 

 

n=0 cnx . Then f(P) is continuous for all

 

Proof. For each number c such that −R < c < R, we have

 

 

( x

c

 

 

=

 

cn

 

x

c

 

 

 

f x)

f(c)

 

 

 

 

xn

 

cn

 

 

 

 

 

n=0

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

c

n

nan−1

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

n cnann−1

n=1

8.6. POWER SERIES

for some an between c and x, for each natural number

 

 

X

Theorem. By Theorem 8.6.6, the series

n |cnan|n−1

 

n=1

351

n, by the Mean Value converges. Hence,

x→c |

− |

x→c | − | (| 0 − |

 

n=1

 

n n

)

 

 

 

 

 

 

 

 

lim f(x)

f(c)

= lim x

c c c +

X

n c an−1

 

 

 

 

 

 

 

 

 

 

 

= 0 · (|c0

 

 

 

 

 

 

 

− c| + n=1 n cnann−1 )

 

 

 

 

X

 

 

 

 

 

 

 

= 0.

 

 

 

 

 

 

Hence, f(x) is continuous at each number c such that −R < c < R. This completes the proof of this theorem.

X

Theorem 8.6.8 Suppose that R > 0, f(x) = cnxn and R is the radius

n=0

X

of convergence of the series cnxn. For each x such that |x| < R, we define

n=0

Z x

F (x) = f(t)dt.

0

Then, for each x such that |x| < R, we get

 

xn+1

X

 

 

.

F (x) =

cn

n + 1

n=0

 

 

 

352

 

 

 

 

 

 

 

CHAPTER 8.

 

INFINITE SERIES

Proof. Suppose that |x| < |r| < R. Then

 

 

 

 

 

n=0

 

n Z0

 

 

m→∞

 

n=0

n n + 1

 

n→∞ Z0

 

 

 

 

 

 

 

 

m

 

xn+1

 

 

 

 

x

 

 

 

 

 

m

 

 

x

 

 

 

 

X

 

 

 

 

 

 

 

 

 

X

 

 

 

 

lim

 

F (x)

c

 

 

 

=

lim

 

x

f(t)dt

 

 

m

c

 

 

tn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

lim

 

 

f(t)

n=0

c

tn

dt

 

 

 

 

 

 

 

 

m→∞

Z0

 

(

 

 

n

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

lim

 

 

 

 

 

 

c

tn

 

dt

 

 

 

 

 

 

 

 

 

 

m→∞

Z0

 

(n=m+1

 

n

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

 

 

 

 

 

 

c

tn

 

 

dt

 

 

 

 

 

 

 

 

 

m→∞ Z0

 

(n=m+1 |

 

n

 

|)

 

 

 

 

 

 

 

 

 

m→∞ Z0

 

 

X

 

 

n |)

 

 

 

 

 

 

 

 

 

 

(n=m+1 |

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

 

 

 

 

X

c rn

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m→∞

 

 

n |!

 

0

x

 

 

 

 

 

 

 

 

n=m+1 |

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

 

 

 

Z

 

 

 

 

 

 

 

 

 

 

lim

 

 

 

 

c rn

 

 

 

 

1 dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=0 · |x|

=0,

X

since |cnrn| converges.

n=0

It follows that

Z

x f(t)dt =

Z

x

cntn!dt

 

 

X

 

00

X

=

n=0

n=0

xn+1

cn n + 1.

This completes the proof of the this theorem.

X

Theorem 8.6.9 Suppose that f(x) =

cnxn for all |x| < R, where R > 0

n=0

 

 

X

is the radius of convergence of the series

cnxn. Then f(x) has continuous

n=0

8.6. POWER SERIES

353

derivatives of all orders for |x| < R that are obtained by successive term-by-

 

 

 

X

 

 

term di erentiations of

cnxn.

 

 

n=0

 

 

Proof. For each |x| < R, we define

 

 

 

 

 

 

X

ncnxn−1.

 

 

g(x) =

 

 

n=1

 

 

 

 

 

 

 

 

X

Then, by Theorem 8.6.5, R is the radius of convergence of the series

ncnxn−1.

 

 

 

n=1

By Theorem 8.6.7, g(x) is continuous. Hence,

 

x

g(x)dx = c0

 

c0 + Z0

+ n=1 cnxn = f(x).

 

 

 

X

 

By the fundamental theorem of calculus, f0(x) = g(x). This completes the proof of this theorem.

Definition 8.6.2 The radius of convergence of the power series

X

ak(x − a)k

k=1

is

(a)zero, if the series converges only for x = a;

(b)r, if the series converges absolutely for all x such that |x − a| < r and diverges for all x such that |x − a| > r.

(c)∞, if the series converges absolutely for all real number x.

If the radius of convergence of the power series in (x − a) is r, 0 < r < ∞, then the interval of convergence of the series is (a −r, a + r). The end points x = a + r or x = a − r are included in the interval of convergence if the

corresponding series

k=1 akrk or

k=1(−1)kakrk converges, respectively. If

r

= ∞, then the

P

 

P

−∞ ∞

).

 

interval of convergence is (

,