Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
_eBook__-_Math_Calculus_Bible.pdf
Скачиваний:
8
Добавлен:
23.08.2019
Размер:
1.23 Mб
Скачать

6.2. INTEGRATION BY SUBSTITUTION

 

 

273

 

Z

csc t(csc t − cot t)dt

 

 

 

 

 

Z

 

sin x

20.

 

 

 

 

21.

 

 

dx

Z

 

 

 

 

cos2 x

 

Z

 

sin2 x

 

 

sin2 t

 

Z

 

cos2 t

22.

 

 

cos x

dx

23.

 

 

sin3 t − 3

dt

24.

 

 

cos3 t + 2

dt

 

 

 

 

 

 

 

 

25.

Z

tan2 t dt

26.

Z

cot2 t dt

27.

Z (2 sec2 t + 1)dt

28.

Z

2

dt

29.

Z

sinh t dt

30.

Z

cosh t dt

 

 

 

t

31.Determine f(x) if f0(x) = cos x and f(0) = 2.

32.Determine f(x) if f00(x) = sin x and f(0) = 1, f0(0) = 2.

33.Determine f(x) if f00(x) = sinh x and f(0) = 2, f0(0) = −3.

34.Prove each of the integration formulas 1–77.

6.2Integration by Substitution

Theorem 6.2.1 Let f(x), g(x), f(g(x)) and g0(x) be continuous on an interval [a, b]. Suppose that F 0(u) = f(u) where u = g(x). Then

(i)

Z

f(g(x))g0(x)dx = Z

f(u)du = F (g(x)) + C

 

 

 

u=g(b)

 

(ii)

Zab f(g(x))g0(x)dx = Zu=g(u)

f(u)du = F (g(b)) − F (g(a)).

Proof. See the proof of Theorem 5.3.1.

Exercises 6.2 In problems 1–39, evaluate the integral by making the given substitution.

274

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6.

TECHNIQUES OF INTEGRATION

1.

Z

3x(x2 + 1)10dx, u = x2 + 1

2.

Z

x sin(1 + x2)dx, u = 1 + x2

 

Z

 

 

 

 

 

 

 

dt, x =

 

 

 

Z

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

 

 

 

t

t

 

4.

 

(1 + x3)3/2 dx, u = 1 + x3

 

 

 

cos( t)

 

 

 

 

 

 

 

 

 

 

3x

 

 

 

 

 

 

Z

 

2earcsin x

 

 

 

 

 

 

Z

 

3earccos x

 

 

 

 

5.

 

 

 

 

dx, u = arcsin x

6.

 

dx

 

1 − x2

1 − x2

7.

Z

x 4x2 dx, u = 4x2

8.

Z

10sin x cos x dx, u = sin x

 

Z

 

4arctan x

 

 

 

 

 

 

Z

 

(1 + ln x)10

9.

 

 

 

 

dx, u = 4arctan x

10.

 

 

 

 

 

 

 

 

dx, u = 1 + ln x

 

1 + x2

 

 

 

 

x

 

 

 

 

Z

 

 

 

5arcsec x

 

 

 

 

Z (tan 2x)3 sec2 2x dx, u = tan 2x

11.

 

 

x

 

 

dx, u = arcsec x

12.

 

 

x2 − 1

 

13.

Z

 

(cot 3x)5 csc2 3x dx, u = cot 3x

14.

Z

 

sin21 x cos x dx, u = sin x

15.

Z

 

cos5 x sin x dx, u = cos x

16.

Z

 

(1 + sin x)10 cos x dx, u = 1 + sin x

17.

Z

 

sin3 x dx, u = cos x

18.

Z

 

cos3 x dx, u = sin x

19.

Z

 

tan3 x dx, u = tan x

20.

Z

 

cot3 x dx, u = cot x

21.

Z

 

sec4 x dx, u = tan x

22.

Z

 

csc4 x dx, u = cot x

23.

Z

 

sin3 x cos3 x dx, u = sin x

24.

Z

 

sin3 x cos3 x dx, u = cos x

25.

Z

 

tan4 x dx, u = tan x

26.

Z

 

sin(ln x)

 

 

 

 

 

 

 

dx, u = ln x

 

 

 

 

x

 

 

6.2.

INTEGRATION BY SUBSTITUTION

Z

 

 

 

 

 

 

 

 

 

 

275

27.

Z

 

 

 

 

1 + x2

dx, u = ln(1 + x)2

28.

tan3 x sec4 x dx, u = sec x

 

 

 

x cos(ln(1 + x2))

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29.

Z

cot3 x csc4 x dx, u = csc x

30.

Z

 

dx

 

, x = 2 sin t

 

4 x2

 

Z

 

9 − x2

 

 

 

 

Z

 

 

 

 

 

 

 

 

 

31.

 

, x = 3 cos t

32.

 

4 + x2

 

, x = 2 sinh t

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

dx

 

 

 

 

 

33.

Z

 

x2 − 9

, x = 3 cosh t

34.

Z

 

4 + x2 , x = 2 tan t

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

35.

Z

 

4 − x2 , x = 2 tanh t

36.

Z

 

xx2 − 4

, x = 2 sec t

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

37.

Z

4esin(3x) cos(3x)dx, u = sin 3x

38.

Z

x 3(x2+4)dx, u = 3x2+4

 

Z

3 etan 2x sec2 x dx, u = tan 2x

 

Z

x

 

 

 

dx, u = x + 2

39.

40.

x + 2

Evaluate the following definite integrals.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41.

Z0

1

(x + 1)30dx

 

42.

Z1

2 x(4 − x2)1/2dx

43.

Z0

π/4 tan3 x sec2 x dx

44.

Z0

1 x3(x2 + 1)3dx

45.

Z0

2

(x + 1)(x − 2)10dx

46.

Z0

8 x2(1 + x)1/2dx

47.

Z0

π/6 sin(3x)dx

 

48.

Z0

π/4 cos(2x)dx

49.

Z0

π/4 sin3 2x cos 2x dx

50.

Z0

π/6 cos4 3x sin 3x dx

 

Z0

1

earctan x

 

 

Z0

1/2

 

 

earcsin x

51.

 

 

 

 

 

 

dx

 

52.

 

 

 

 

 

dx

 

 

 

 

1 + x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − x2

276

 

 

 

 

 

CHAPTER 6. TECHNIQUES OF INTEGRATION

 

3

earcsec x

 

 

1

 

dx

53.

Z2

x

 

 

dx

54.

Z0

 

 

x2 − 1

 

1 + x2

6.3Integration by Parts

Theorem 6.3.1 Let f(x), g(x), f0(x) and g0(x) be continuous on an interval [a, b]. Then

(i)

Z

f(x)g0

(x)dx = f(x)g(x) − Z

g(x)f0(x)dx

(ii)

Zab f(x)g0

(x)dx = (f(b)g(b) − f(a)g(a)) − Zab g(x)f0(x)dx

(iii)

Z

udv = uv − Z

vdu

 

where u = f(x) and dv = g0(x)dx are the parts of the integrand. Proof. See the proof of Theorem 5.4.1.

Exercises 6.3 Evaluate each of the following integrals.

1.

Z

x sin x dx

2.

Z

x cos x dx

3.

Z

x ln x dx

4.

Z

x ex dx

5.

Z

x 4x dx

6.

Z

x2 ln x dx

7.

Z

x2 sin x dx

8.

Z

x2 cos x dx

9.

Z

x2ex dx

10.

Z

x2 10x dx

6.3.

INTEGRATION BY PARTS

 

 

277

11.

Z

ex sin x dx (Let u = ex twice and solve.)

 

12.

Z

ex cos x dx (Let u = ex twice and solve.)

 

13.

Z

e2x sin 3x dx (Let u = e2x twice and solve.)

14.

Z

x sin(3x)dx

15.

Z

x2 cos(2x)dx

16.

Z

x2e4xdx

17.

Z

x3 ln(2x)dx

18.

Z

x sec2 x dx

19.

Z

x csc2 x dx

20.

Z

x sinh(4x)dx

21.

Z

x2 cosh x dx

22.

Z

x cos(5x)dx

23.

Z

sin(ln x)dx

24.

Z

cos(ln x)dx

25.

Z

x arcsin x dx

26.

Z

x arccos x dx

27.

Z

x arctan x dx

28.

Z

x arcsec x dx

29.

Z

arcsin x dx

30.

Z

arccos x dx

31.

Z

arctan x dx

 

Z

 

 

 

 

32.arcsec x dx

Verify the following integration formulas:

(sinn−2

278

CHAPTER 6. TECHNIQUES OF INTEGRATION

33.

Z

sinn(ax)dx =

sinn−1

(ax) cos(ax)

+

n − 1

Z

 

 

 

na

 

n

 

 

 

 

 

 

 

34.

Z

cosn(ax)dx =

1

cosn−1(ax) sin(ax) +

n − 1

 

Z

 

na

 

 

 

 

 

 

 

 

 

n

 

 

35.

Z

xnexdx = xnex − n Z

xn−1exdx

 

 

 

 

 

 

 

Z

 

 

 

 

 

Z

 

 

 

 

 

 

ax)dx

(cosn−2 ax)dx

36.

 

xn sin x dx = −xn cos x + n

xn−1 cos x dx

 

37.

Z

xn cos x dx = xn sin x − n Z

xn−1 sin x dx

 

38.

Z

eax sin(bx)dx =

 

 

 

1

 

eax[a sin(bx) − b cos(bx)] + C

 

 

 

 

 

a2 + b2

39.

Z

eax cos(bx) dx =

 

 

1

 

eax[a cos(bx) + b sin(bx)] + C

 

 

 

a2 + b2

 

Z

 

1

 

 

 

 

 

1

 

 

 

 

 

40.

xn ln x dx =

 

 

xn+1 ln x −

 

 

 

 

xn+1 + C, n 6= −1, x > 0

n + 1

(n +

1)2

41.

Z

secn x dx =

1

 

 

 

secn−2 x tan x +

n − 2

Z

secn−2 x dx, n = 1, n > 0

n − 1

n − 1

 

 

 

 

 

 

 

6

42.

Z

cscn x dx =

 

−1

 

cscn−2 x cot x +

n − 2

Z

cscn−2 x dx, n = 1, n > 0

n − 1

n − 1

 

 

 

 

 

 

 

 

6

Use the formulas 33–42 to evaluate the following integrals:

43.

Z

sin4 x dx

 

 

 

 

 

 

 

 

44.

 

 

Z

cos5 x dx

45.

Z

x3exdx

 

 

 

 

 

 

 

 

46.

 

 

Z

x4 sin x dx

47.

Z

x3 cos x dx

 

 

 

 

 

 

 

 

48.

 

 

Z

e2x sin 3x dx

49.

Z

e3x cos 2x dx

 

 

 

50.

 

 

Z

x5 ln x dx

6.3.

INTEGRATION BY PARTS

 

 

279

51.

Z

sec3 x dx

 

 

 

 

52.

Z

csc3 x dx

Prove each of the following formulas:

 

 

 

53.

Z

tann x dx =

1

 

 

tann−1 x − Z

tann−2 x dx, n 6= 1

 

 

 

 

 

n − 1

54.

Z

cotn x dx =

1

 

 

cotn−1 x − Z

cotn−2 x dx, n 6= 1

 

 

n − 1

55.

Z

sin2n+1 x dx = − Z

(1 − u2)ndu, u = cos x

ZZ

56.cos2n+1 x dx = − (1 − u2)ndu, u = sin x

57.

Z

sin2n+1 x cosm x dx = − Z

(1 − u2)numdu, u = cos x

58.

Z

cos2n+1 x sinm x dx = Z (1 − u2)numdu, u = sin x

 

Z

Z

 

59.sin2n x cos2m x dx = (sin x)2n(1 − sin2 x)mdx

60.

Z

tann x sec2m x dx =

Z

un(1 + u2)m−1du, u = tan x

 

 

 

61.

Z

cotn x csc2m x dx = − Z

un(1 + u2)m−1du, u = cot x

 

 

 

62.

Z

tan2n+1 x secm x dx = Z (u2 − 1)num−1du, u = sec x

 

 

 

63.

Z

cot2n+1 x cscm x dx = − Z (u2 − 1)num−1du, u = csc x

 

 

64.

Z

sin mx cos nx dx = −2

 

m + n

+

m

n

 

+ C; m2

6= n2

 

 

 

1

 

cos(m + n)x

 

cos(m

n)x