Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
_eBook__-_Math_Calculus_Bible.pdf
Скачиваний:
8
Добавлен:
23.08.2019
Размер:
1.23 Mб
Скачать

Chapter 7

Improper Integrals and

Indeterminate Forms

7.1Integrals over Unbounded Intervals

Definition 7.1.1 Suppose that a function f is continuous on (−∞, ∞). Then we define the following improper integrals when the limits exist

Z f(x)dx = lim

Z b f(x)dx

(1)

ab→∞ a

b

a→−∞

b

 

Z−∞

Za

(2)

f(x)dx =

lim

f(x)dx

c

 

 

Z−∞ f(x)dx =

Z−∞ f(x)dx + Zc f(x)dx

(3)

provided the integrals on the right hand side exist for some c. If these improper integrals exist, we say that they are convergent; otherwise they are said to be divergent.

Definition 7.1.2 Suppose that a function f is continuous on [0, ∞). Then the Laplace transform of f, written L(f) or F (s), is defined by

Z

L(f) = F (s) = e−stf(t)dt.

0

294

7.1. INTEGRALS OVER UNBOUNDED INTERVALS

Theorem 7.1.1 The Laplace transform has the following properties:

 

L(c) =

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

L(eat) =

 

 

 

 

 

 

 

 

 

 

 

 

s − a

s

 

L(cosh at) =

 

 

 

 

 

s2 − a2

 

L(sinh at) =

 

 

 

a

 

s2 − a2

 

 

L(cos ωt) =

 

 

 

 

s

 

s2 + ω2

 

 

L(sin ωt) =

 

 

 

 

 

ω

 

s2 + ω2

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

L(t) =

 

 

 

 

 

 

 

s2

 

 

 

 

Proof.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i) L(c) = Z0

ce−stdt

 

 

 

 

ce−st

=

−s 0

= sc.

Z

(ii) L(eat) = eate−stdt

0

Z

=e−(s−a)tdt

0

e−(s−a)t

=

−(s − a) 0

295

(4)

(5)

(6)

(7)

(8)

(9)

(10)

1 = s − a

296CHAPTER 7. IMPROPER INTEGRALS AND INDETERMINATE FORMS

provided s > a.

(iii) L(cosh at) = Z0

 

eat + e

at

e−stdt

 

 

 

2

 

= 12[L(eat) + L(e−at)]

 

1

1

 

1

=

 

 

 

 

+

 

2

 

s − a

s + a

s

= s2 − a2 , s > |a|.

(iv) L(sinh at) = Z 1 (eat − e−at)e−stdt

0 2

 

1

1

 

1

 

=

 

 

 

 

 

, s > |a|

2

 

s − a

s + a

a

= s2 − a2 , s > |a|.

(v)

L(cos ωt) = Z0

cos ωte−stdt

 

=

 

 

 

1

 

e−st(−s cos ωt + ω sin ωt) 0

 

 

 

 

 

 

ω2

+ s2

 

 

 

 

 

s

 

=

 

 

 

.

 

ω2

+ s2

(vi)

L(sin ωt) = Z0

sin ωte−stdt

 

=

 

 

 

1

 

e−st(−s sin ωt − ω cos ωt) 0

 

 

 

 

 

ω2 + s2

 

 

 

 

 

ω

 

=

 

 

.

 

 

ω2 + s2

7.1. INTEGRALS OVER UNBOUNDED INTERVALS

297

(vii) L(t) = Z0

te−stdt;

 

(u = t, dv = e−stdt)

 

 

 

te st

 

 

e−st

 

=

 

 

 

 

0

+

 

 

 

dt

 

 

 

s

 

 

0

s

 

 

 

 

 

 

Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

e−st

 

 

 

 

 

 

 

 

 

s2

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

1

.

 

 

 

 

 

 

 

 

s2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This completes the proof of Theorem 7.1.1.

Theorem 7.1.2 Suppose that f f(x) ≤ g(x) on [a, ∞).

Z

(i)If g(x)dx converges, then

and g are continuous on [a, ∞) and 0 ≤

Z

f(x)dx converges.

a

a

(ii) If Zaf(x)dx diverges, then

Zag(x)dx diverges.

Proof. The proof of this follows from the order properties of the integral and is omitted.

Definition 7.1.3 For each x > 0, the Gamma function, denoted (x), is defined by

(x) = Z0

tx−1e−tdt.

 

Theorem 7.1.3 The Gamma function has the following properties:

 

(1) = 1

 

(11)

(x + 1) = x (x)

(12)

(n + 1) = n!, n = natural number

(13)

298CHAPTER 7. IMPROPER INTEGRALS AND INDETERMINATE FORMS

Proof.

Z

(1) = e−tdt

0

= −e−t ∞

0

=1

Z

(x + 1) = txe−tdt; (u = tx, dv = e−tdt)

0

+ x Z0

= −txe−t 0

tx−1e−tdt

 

 

 

= x (x), x > 0(2) = 1 (1) = 1(3) = 2 (2) = 1 · 2 = 2!

If (k) = (k − 1)!, then(k + 1) = k (k)

=k((k − 1)!)

=k!.

By the principle of mathematical induction,

(n + 1) = n!

for all natural numbers n. This completes the proof of this theorem.

Theorem 7.1.4 Let f be the normal probability distribution function defined by

f(x) = σ

e

 

2

1

x−µ

 

 

 

 

 

 

where µ is the constant mean of the distribution and σ is the constant standard deviation of the distribution. Then the improper integral

Z

f(x)dx = 1.

−∞

Let F be the normal distribution function defined by

Z x

F (x) = f(x)dx.

−∞