Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
_eBook__-_Math_Calculus_Bible.pdf
Скачиваний:
8
Добавлен:
23.08.2019
Размер:
1.23 Mб
Скачать

314CHAPTER 7. IMPROPER INTEGRALS AND INDETERMINATE FORMS

7.4Improper Integrals

1.Suppose that f is continuous on (−∞, ∞) and g0(x) = f(x). Then define each of the following improper integrals:

Chapter 8

Infinite Series

8.1Sequences

Definition 8.1.1 An infinite sequence (or sequence) is a function, say f, whose domain is the set of all integers greater than or equal to some integer m. If n is an integer greater than or equal to m and f(n) = an, then we express the sequence by writing its range in any of the following ways:

1.f(m), f(m + 1), f(m + 2), . . .

2.am, am+1, am+2, . . .

3.{f(n) : n ≥ m}

4.{f(n)}n=m

5.{an}n=m

Definition 8.1.2 A sequence {an}n=m is said to converge to a real number L (or has limit L) if for each > 0 there exists some positive integer M such that |an − L| < whenever n ≥ M. We write,

lim an = L or an → L as n → ∞.

n→∞

If the sequence does not converge to a finite number L, we say that it diverges.

315

316

 

 

CHAPTER 8.

INFINITE SERIES

Theorem 8.1.1 Suppose that c is a positive real number,

{

n}n=m

and

{

n}n=m

a

b

are convergent sequences. Then

 

 

 

 

 

(i)

lim (can) = c lim an

 

 

 

 

 

 

 

n→∞

n→∞

 

 

 

 

 

 

(ii)

lim (an + bn) = lim an + lim bn

 

 

 

 

 

 

n→∞

n→∞

n→∞

 

 

 

 

 

(iii)

nlim (an bn) = nlim an nlim bn

 

 

 

 

 

 

→∞

→∞

→∞

 

 

 

 

 

(iv)

lim

(anbn) = lim an lim bn

 

 

 

 

 

 

n→∞

n→∞

n→∞

 

 

 

 

 

(v)

nlim

an

=

limn→∞ an

, if nlim bn 6= 0.

b

n

lim

b

n

 

→∞

 

 

n→∞

 

→∞

c

(vi) lim (an)c =

lim an

n→∞

n→∞

(vii) lim (ean ) = elimn→∞ an

n→∞

(viii) Suppose that an ≤ bn ≤ cn for all n ≥ m and

lim an = lim cn = L.

n→∞ n→∞

Then

lim bn = L.

n→∞

Proof. Suppose that {an}n=m converges to a and {bn}n=m converges to b. Let 1 > 0 be given. Then there exist natural numbers N and M such that

|an − a| < 1

if n ≥ N,

(1)

|bn − b| < 1

if n ≥ M.

(2)

Part (i) Let > 0 be given and c =6 0. Let 1 = 2|c| and n ≥ N + M. Then by the inequalities (1) and (2), we get

|can − ca| = |c| |an − a|

<|c| 1

<.

8.1. SEQUENCES

 

 

 

317

This completes the proof of Part (i).

 

Part (ii) Let > 0 be given and 1 =

 

≥ N + M. Then by the

 

. Let m

2

inequalities (1) and (2), we get

 

 

 

 

 

|(an + bn) − (a + b)| = |(an − a) + (bn − b)|

 

 

≤ |an − a| + |bn − b|

 

 

< 1 + 1

 

 

 

= .

 

This completes the proof of Part (ii).

 

Part (iii)

 

 

 

 

 

nlim (an bn) = nlim

(an + (−1)bn)

 

→∞

→∞

an + nlim [(−1)bn]

 

 

= nlim

(by Part (ii))

 

→∞

→∞

 

 

= nlim

an + (−1) nlim bn

(by Part (i))

 

→∞

 

 

→∞

 

=a + (−1)b

=a − b.

Part (iv) Let > 0 be given and 1

= min

1,

 

 

 

. If n ≥ N + M,

1 + a

+ b

|

 

 

| |

|

 

then by the inequalities (1) and (2) we have

 

 

 

|anbn − ab| = |[(an − a) + a][(bn − b) + b] − ab|

= |(an − a)(bn − b) + (an − a)b + a(bn − b| ≤ |an − a| |bn − b| + |b| |an − a| + |a| |bn − b|

< 21 + |b| 1 + |a| 1

= 1( 1 + |b| + |a|)

1(1 + |b| + |a|)

≤ .

Part (v) First we assume that b > 0 and prove that

lim 1 = 1.

n→∞ bn b

318 CHAPTER 8. INFINITE SERIES

1

b and using inequality (2) for n ≥ M, we get

By taking 1 =

 

2

 

 

|bn − b| <

1

 

 

b, −

1

b < bn − b <

1

 

 

 

 

 

 

 

 

 

 

 

 

b,

 

 

2

 

 

2

2

1

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

2

 

1

 

2

 

 

 

 

b < bn <

 

 

 

 

 

b, 0 <

 

 

 

 

<

 

 

 

 

<

 

 

.

 

 

 

2

2

 

 

3b

bn

b

Then, for n ≥ M, we get

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

nb

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bn b

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

b

 

 

bn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

bn

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

 

 

| · b · bn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

< |bn − b| ·

 

2

.

 

 

 

 

(3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b2

Let > 0 be given. Choose 2

= min

b

,

 

b2

. There exists some natural

2

 

 

2

 

number N such that if n ≥ N, then

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|bn − b| < 2.

 

 

 

 

 

 

 

(4)

If n ≥ N + M, then the inequalities (3) and (4) imply that

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

< |bn − b|

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bn b

 

b2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

< 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It follows that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

1

 

 

=

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bn

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n→∞

 

 

 

 

 

 

 

 

n

 

· n→∞ bn

 

 

n→∞ bn

= n→∞

 

 

 

 

 

lim

 

an

 

 

 

 

 

 

lim

(a ) lim

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= a ·

b

 

 

 

1

=

a

.

 

 

 

 

 

 

 

 

b

 

 

 

8.1. SEQUENCES

 

 

 

 

 

 

319

If b < 0, then

bn

 

 

 

 

−bn

n→∞

= n→∞

n

 

· n→∞

lim

 

an

lim

( a )

lim

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1 = (−a) −b

= ab .

This completes the proof of Part (v).

Part (vi) Since f(x) = xc is a continuous function,

c

lim (an)c =

lim an = ac.

n→∞

n→∞

Part (vii) Since f(x) = ex is a continuous function,

lim ean = elimn→∞ an = ea.

n→∞

Part (viii) Suppose that an ≤ bn ≤ cn for all n ≥ m and

lim an = L = lim cn = L.

n→∞ n→∞

Let > 0 be given. Then there exists natural numbers N and M such that

a

n

L <

 

 

,

< a

L <

 

 

 

for n

N,

2

2

2

|

 

|

 

n

 

 

 

c

n

L <

 

 

,

< c

L <

 

 

for n

M.

2

2

2

 

|

 

|

 

n

 

 

 

 

 

If n ≥ N + M, then n > N and n > M and, hence,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

< an − L

≤ bn − L ≤ cn

− L <

 

.

 

 

2

2

 

It follows that

lim bn = L.

n→∞

This completes the proof of this theorem.