Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
_eBook__-_Math_Calculus_Bible.pdf
Скачиваний:
8
Добавлен:
23.08.2019
Размер:
1.23 Mб
Скачать

230

 

 

 

CHAPTER 5. THE DEFINITE INTEGRAL

19.

Z

x sinh x dx

20.

Z

x cosh x dx

21.

Z

x(ln x)3dx

22.

Z

x arctan x dx

23.

Z

xarccot x dx

24.

Z

sin3 x dx

25.

Z

cos3 x dx

26.

Z

sin4 x dx

27.

Z

cos4 x dx

28.

Z

sinh2 x dx

29.

Z

cosh2 x dx

30.

Z

sinh3 x dx

31.

Z

x2 sinh x dx

32.

Z

x2 cosh x dx

33.

Z

x3 sinh x dx

34.

Z

x3 cosh x dx

35.

Z

x2e2xdx

36.

Z

x3e−xdx

37.

Z

x sin(3x) dx

38.

Z

x cos(x + 1)dx

39.

Z

x ln(x + 1)dx

40.

Z

x 2xdx

41.

Z

x 102xdx

42.

Z

x2 103xdx

43.

Z

x2(ln x)3dx

44.

Z

arcsinh (3x)dx

45.

Z

arccosh (2x)dx

46.

Z

arctanh (2x)dx

47.

Z

arccoth (3x)dx

48.

Z

xarcsec x dx

Z

50.xarccsc x dx

5.5Logarithmic, Exponential and Hyperbolic Functions

With the Fundamental Theorems of Calculus it is possible to rigorously develop the logarithmic, exponential and hyperbolic functions.

5.5. LOGARITHMIC, EXPONENTIAL AND HYPERBOLIC FUNCTIONS231

Definition 5.5.1 For each x > 0 we define the natural logarithm of x, denoted ln x, by the equation

 

 

 

 

 

x 1

 

 

 

 

 

 

 

ln(x) = Z1

 

 

dt

, x > 0.

 

 

 

 

 

t

Theorem 5.5.1

(Natural Logarithm)

The natural logarithm, ln x, has the

following properties:

 

 

(i)

d

 

(ln x) =

1

> 0 for all x > 0.

 

 

dx

x

 

 

 

 

 

 

 

 

 

The natural logarithm is an increasing, continuous and di erentiable function on (0, ∞).

(ii)If a > 0 and b > 0, then ln(ab) = ln(a) + ln(b).

(iii)If a > 0 and b > 0, then ln(a/b) = ln(a) + ln(b).

(iv)If a > 0 and n is a natural number, then ln(an) = n ln a.

(v)The range of ln x is (−∞, ∞).

(vi)ln x is one-to-one and has a unique inverse, denoted ex.

Proof.

(i)Since 1/t is continuous on (0, ∞), (i) follows from the Fundamental Theorem of Calculus, Second Form.

(ii)Suppose that a > 0 and b > 0. Then

ln(ab) = Z1

ab 1

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

ab 1

 

 

 

 

 

 

= Z1

a 1

dt + Za

dt

 

 

 

 

t

 

 

t

 

 

 

 

 

 

 

 

 

 

b

1

 

 

 

 

1

 

1

 

= ln a + Z1

 

 

adu ; u =

 

 

t, du =

 

dt

au

a

a

= ln a + ln b.

232

 

 

 

 

 

 

CHAPTER 5. THE DEFINITE INTEGRAL

(iii) If a > 0 and b > 0, then

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

= Z1

(ab ) 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

a 1

t

a

1

 

 

 

 

 

 

 

b

 

b

 

 

 

 

 

 

 

b

dt; u =

 

dt

 

 

 

= Z1

 

 

 

dt + Za

 

 

 

t, du =

 

 

 

 

 

 

t

t

a

a

 

 

 

Z1

a 1

 

Zb

1

 

 

1

 

 

 

a

 

 

 

 

 

 

 

 

 

t

 

 

 

 

b

 

 

b

 

 

 

 

 

 

 

=

 

 

 

dt +

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

au

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= Z1

a

 

dt − Z1

b 1

 

du

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

u

 

 

 

 

 

 

 

 

 

 

 

=ln a − ln b.

(iv)If a > 0 and n is a natural number, then

an 1

 

 

ln(an) = Z1 a

 

 

 

 

dt ; t = un, dt = nun−1du

 

t

Z1

a 1

·

 

=

1

 

 

nun−1du

un

 

= n Z1

 

 

 

 

 

du

 

 

u

= n ln a

 

 

as required.

(v)From the partition {1, 2, 3, 4, · · · }, we get the following inequality using upper and lower sum approximations:

graph

1312 = 12 + 31 + 41 < ln 4 < 1 + 21 + 31.

5.5. LOGARITHMIC, EXPONENTIAL AND HYPERBOLIC FUNCTIONS233

Hence, ln 4 > 1. ln(4n) = n ln 4 > n and ln 4−n = −n ln 4 < −n. By the intermediate value theorem, every interval (−n, n) is contained in the range of ln x. Therefore, the range of ln x is (−∞, ∞), since the derivative of ln x is always positive, ln x is increasing and hence one-to- one. The inverse of ln x exists.

(vi)Let e denote the number such that ln(e) = 1. Then we define y = ex if and only if x = ln(y) for x (−∞, ∞), y > 0.

This completes the proof.

Definition 5.5.2 If x is any real number, we define y = ex if and only if x = ln y.

Theorem 5.5.2 (Exponential Function) The function y = ex has the following properties:

(i)e0 = 1, ln(ex) = x for every real x and dxd (ex) = ex.

(ii)ea · eb = ea+b for all real numbers a and b.

(iii)ea = ea−b for all real numbers a and b. eb

(iv)(ea)n = ena for all real numbers a and natural numbers n.

Proof.

(i)Since ln(1) = 0, e0 = 1. By definition y = ex if and only if x = ln(y) = ln(ex). Suppose y = ex. Then x = ln y. By implicit di erentiation, we get

1 = y1 dxdy , dxdy = y = ex.

Therefore,

dxd (ex) = ex.

234

CHAPTER 5. THE DEFINITE INTEGRAL

(ii)

Since ln x is increasing and, hence, one-to-one,

 

ea · eb = ea+b

 

ln(ea · eb) = ln(ea+b) ↔

 

ln(ea) + ln(eb) = a + b ↔

 

a + b = a + b.

 

It follows that for all real numbers a and b,

 

ea · eb = ea+b.

(iii)ea = ea−b

eb

ea

ln eb = ln(ea−b) ↔

ln(ea) − ln(eb) = a − b ↔

a − b = a − b.

It follows that for all real numbers a and b,

ea = ea−b. eb

(iv)(ea)n = ena

ln((ea)n) = ln(ena) ↔

n ln(ea) = na ↔

na = na.

Therefore, for all real numbers a and natural numbers n, we have

(ea)n = ena.

5.5. LOGARITHMIC, EXPONENTIAL AND HYPERBOLIC FUNCTIONS235

Definition 5.5.3 Suppose b > 0 and b 6= 1. Then we define the following:

(i)

For each real number x, bx = ex ln b.

(ii)

y = logb x =

ln x

.

 

 

 

ln b

Theorem 5.5.3

(General Exponential Function) Suppose b > 0 and b 6= 1.

Then

 

 

(i)ln(bx) = x ln b, for all real numbers x.

(ii)dxd (bx) = bx ln b, for all real numbers x.

(iii)bx1 · bx2 = bx1+x2 , for all real numbers x1 and x2.

(iv)bx1 = bx1−x2 , for all real numbers x1 and x2. bx2

(v)(bx1 )x2 = bx1x2 , for all real numbers x1 and x2.

 

Z

bx dx =

 

bx

(vi)

 

 

 

+ c.

ln b

Proof.

 

 

 

 

 

 

 

(i)

ln(bx) = ln(ex ln b) = x ln b

 

 

d

 

 

 

 

d

(ii)

 

 

 

(bx) =

 

(ex ln b) = ex ln b · (ln b) (by the chain rule)

 

dx

dx

=bx ln b.

(iii)bx1 · bx2 = ex1 ln b · ex2 ln b

=e(x1 ln b+x2 ln b)

=e(x1+x2) ln b

=b(x1+x2)

236

 

 

 

CHAPTER 5. THE DEFINITE INTEGRAL

(iv)

bx1

=

ex1 ln b

 

bx2

ex2 ln b

=ex1 ln bx2 ln b

=e(x1x2) ln b

=b(x1x2).

(v)By Definition 5.5.3 (i), we get

(b

x1

x2

= e

x2 ln(bx1 )

 

)

 

=ex2 ln(ex1 ln b)

=ex2·x1 ln b

=e(x1x2) ln b

=bx1x2 .

(vi) Since

 

 

 

 

 

 

 

 

d

 

(bx) = bx ln b,

 

 

dx

 

 

 

 

 

we get

 

 

 

 

 

 

Z

bx(ln b) dx = bx + c,

 

ln b Z bx dx = bx + c,

 

 

Z

ex dx =

bx

 

 

 

+ D,

 

 

ln b

where D is some constant. This completes the proof.

Theorem 5.5.4 If u(x) > 0 for all x, and u(x) and v(x) are di erentiable functions, then we define

y = (u(x))v(x) = ev(x) ln(u(x)).

5.5. LOGARITHMIC, EXPONENTIAL AND HYPERBOLIC FUNCTIONS237

Then y is a di erentiable function of x and

u0((x)) .

 

dx

= dx (u(x))v(x) = (u(x))v(x) v0

(x) ln(u(x)) + v(x)

 

dy

 

d

 

u x

Proof. This theorem follows by the chain rule and the product rule as follows

dx

[uv] = dx [ev ln u] = ev ln u v0

ln u + v

u0

= uv v0 ln u + v

u1 .

d

 

d

 

u

 

u

Theorem 5.5.5 The following di erentiation formulas for the hyperbolic functions are valid.

(i)

 

d

 

(sinh x) = cosh x

(ii)

 

d

 

(cosh x) = sinh x

dx

dx

 

 

 

 

 

(iii)

 

 

d

 

(tanh x) = sech2x

(iv)

 

d

(coth x) = −csch2x

 

 

 

 

 

 

 

 

 

dx

 

dx

(v)

 

d

 

(sech x) = −sech x tanh x

(vi)

 

d

(csch x) = −csch x coth x

 

 

 

 

 

 

 

 

dx

 

 

dx

Proof. We use the definitions and properties of hyperbolic functions given in Chapter 1 and the di erentiation formulas of this chapter.

(i)

 

d

 

(sinh x) =

d

 

 

ex − e−x

=

 

ex + e−x

 

= cosh x.

 

dx

dx

2

 

2

 

 

 

 

 

 

 

 

 

 

(ii)

 

d

 

(cosh x) =

d

 

 

ex + e−x

 

=

ex − e−x

 

= sinh x.

dx

dx

 

2

 

 

 

 

 

 

 

 

2

 

 

 

(iii)

 

d

 

(tanh x) =

d

 

 

sinh x

 

=

(cosh x)(cosh x) − sinh(sinh x)

dx

dx

cosh x

 

 

 

 

 

 

 

 

 

 

 

(cosh x)2

 

 

 

 

 

=

cosh2 x − sinh2 x

=

1

 

 

= sech2x

 

 

 

 

 

 

 

cosh x)2

 

 

 

 

 

 

 

 

 

(cosh x)2

 

 

 

 

 

 

 

238

 

 

 

 

 

CHAPTER 5. THE DEFINITE INTEGRAL

(iv)

d

(coth x) =

d

(tanh x)−1 = −1(tanh x)−2 · sech2x

 

 

 

 

dx

dx

11

=sinh2 x · cosh2 x = −sinh2 x

=−csch2x.

(v)dxd (sech x) = dxd (cosh x)−1 = −1(cosh x)−2 · sinh x

=− sech x tanh x.

(vi)dxd (csch x) = dxd (sinh x)−1 = −1(sinh x)−2 · cosh x

=− coth x csch x.cosh2 x

This completes the proof.

Theorem 5.5.6 The following integration formulas are valid:

(i)

Z

sinh x dx = cosh x + c

(ii)

Z

cosh x dx = sinh x + c

 

 

 

(iii)

Z

tanh x dx = ln(cosh x) + c

(iv)

Z

coth xdx = ln | sinh x| + c

 

(v)

Z

sech x dx = 2 arctan(ex) + c

(vi)

Z

csch x dx = ln

 

tanh

 

x

 

+ c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof. Each formula can be easily verified by di erentiating the right-hand side to get the integrands on the left-hand side. This proof is left as an exercise.

Theorem 5.5.7 The following di erentiation and integration formulas are valid:

5.5. LOGARITHMIC, EXPONENTIAL AND HYPERBOLIC FUNCTIONS239

 

 

d

1

 

 

 

 

 

Z

 

 

 

dx

 

 

 

 

(i)

 

 

 

 

(arcsinh x) =

 

 

 

 

 

 

 

(ii)

 

 

 

 

=

arcsinh x + c

dx

1 + x2

 

 

 

1 + x2

(iii)

 

 

d

 

(arccosh x) =

1

 

 

 

 

(iv)

Z

 

dx

=

arccosh x + c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

x2 − 1

 

x2 − 1

(v)

 

dx

(arctanh x) = 1 − x2 , |x| < 1

(vi)

Z

 

1 − x2 dx = arctanh x + c

 

 

d

1

 

 

 

 

 

 

1

 

 

 

 

 

 

Proof. This theorem follows directly from the following definitions:

 

arcsinh x = ln(x +

 

 

(2) arccosh x = ln(x +

 

 

(1)

1 + x2

)

x2 − 1)

(3) arctanh x =

1

 

ln

1 + x

, |x| < 1.

 

 

 

 

 

2

1 x

The proof is left as an exercise.

Exercises 5.5

1.Prove Theorem 5.5.6.

2.Prove Theorem 5.5.7.

3.Show that sinh mx and cosh mx are linearly independent if m 6= 0. (Hint:

 

Show that the Wronskian W (sinh mx, cosh mx) is not zero if m 6= 0.)

4.

6

Show that emx and e−mx are linearly independent if m = 0.

5.

Show that solution of the equation y00 − m2y = 0 can be expressed as

 

y = c1emx + c2e−mx.

6.

Show that every solution of y00 − m2y = 0 can be written as y =

 

A sinh mx + B cosh mx.

7.Determine the relation between c1 and c2 in problem 5 with A and B in problem 6.

8.Prove the basic identities for hyperbolic functions:

240

CHAPTER 5. THE DEFINITE INTEGRAL

(i)sinh(x + y) = sinh x cosh y + cosh x sinh y.

(ii)sinh(x − y) = sinh x cosh y − cosh x sinh y.

(iii)cosh(x + y) = cosh x cosh y + sinh x sinh y.

(iv)cosh(x − y) = cosh x cosh y − sinh x sinh y.

(v)sinh 2x = 2 sinh x cosh x.

(vi)cosh2 x + sinh2 x = 2 cosh2 x − 1 = 1 + 2 sinh2 x = cosh 2x.

(vii) cosh2 x − sinh2 x = 1, 1 − tanh2 x = sech2x, coth2 x − 1 = csch2x.

9. Eliminate the

radical sign using the given substitution:

 

 

 

 

 

 

, x = tanh t

(i)

a2 + x2

,

x = a sinh t

(ii)

a2 − x2

(iii)x2 − a2, x = a cosh t.

10.Compute y0 in each of the following:

(i)

y = 2 sinh(3x) + 4 cosh(2x)

(ii)

y = 4 tanh(5x) − 6 coth(3x)

(iii)

y = x sech (2x) + x2 csch (5x)

(iv)

y = 3 sinh2(4x + 1)

(v)

y = 4 cosh2(2x − 1)

 

 

(vi)

y = sinh(2x) cosh(3x)

11. Compute y0 in each of the following:

 

 

 

(i)

y = x2e−x3

 

 

(ii)

y = 2x2

 

(iii)

y = (x2 + 1)sin(2x)

(iv)

y = log10(x

2

+ 1)

(v)

y = log2

(sec x + tan x)(vi)

(x3+1)

 

y = 10

12. Compute y0 in each of the following:

 

 

 

 

 

 

 

(i) y = x ln x − x

x

2

− 4)

2

)

(ii) y = ln(x +

 

(iii) y = ln(x +

4 + x

(iv) y =

1

ln

1 + x

(v) y = arcsinh (3x)

(vi) y = arccosh (3x)

 

 

2

1 − x

5.5. LOGARITHMIC, EXPONENTIAL AND HYPERBOLIC FUNCTIONS241

13.

Evaluate each of the following integrals:

 

 

 

 

 

 

 

(i)

Z

sinh(3x) dx

(ii)

Z

x3ex2 dx

(iii)

Z

x2 ln(x + 1) dx

 

(iv)

Z

x sinh 2x dx

(v)

Z

x cosh 3x dx

(vi)

Z

x4x2

dx

14.

Evaluate each of the following integrals:

 

 

 

 

 

 

 

(i)

Z

arcsinh x dx

(ii)

Z

arccosh x dx

 

(iii)

Z

arctanh x dx

 

(iv)

Z

4 − x2

(v)

Z

4 + x2

 

(vi)

Z

x2 − 4

 

 

 

 

dx

 

 

 

dx

 

 

 

 

 

dx

15.Logarithmic Di erentiation is a process of computing derivatives by first taking logarithms and then using implicit di erentiation. Find y0 in each of the following, using logarithmic di erentiation.

 

 

(x2 + 1)3(x2 + 4)10

 

 

2

 

 

(x3+1)

 

 

(i)

y =

 

(ii)

y = (x

 

 

+ 4)

 

 

(x2 + 2)5(x2 + 3)4

 

 

 

 

(iii)

 

 

 

(4 cos x+7)

(iv)

 

 

 

 

 

 

(x3

+1)

y = (sin x + 3)

y = (3 sinh x + cos x + 5)

 

(v)

y = (e

x2

(2x+1)

(vi)

2

(x

2

(x3

+1)

 

 

+ 1)

y = x

 

 

+ 1)

 

 

In problems 16–30, compute f0(x) each f(x).

16.

f(x) = Z1x sinh3(t)dt

17.

f(x) = Zxx2

cosh5(t)dt

 

cosh x

 

 

sech x

18.

f(x) = Zsinh x

(1 + t2)3/2dt

19.

f(x) = Ztanh x (1 + t3)1/2dt

 

(ln x)2

 

ex2

20.

f(x) = Zln x

(4 + t2)5/2dt

21.

f(x) = Zex2

(1 + 4t2)πdt