Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
_eBook__-_Math_Calculus_Bible.pdf
Скачиваний:
8
Добавлен:
23.08.2019
Размер:
1.23 Mб
Скачать

320

CHAPTER 8. INFINITE SERIES

8.2Monotone Sequences

Definition 8.2.1 Let {tn}n=m be a given sequence. Then {tn}n=m is said to be

(a)increasing if tn < tn+1 for all n ≥ m;

(b)decreasing if tn+1 < tn for all n ≥ m;

(c)nondecreasing if tn ≤ tn+1 for all n ≥ m;

(d)nonincreasing if tn+1 ≤ tn for all n ≥ m;

(e)bounded if a ≤ tn ≤ b for some constants a and b and all n ≥ m;

(f)monotone if {tn}n=m is increasing, decreasing, nondecreasing or nonincreasing.

(g)a Cauchy sequence if for each > 0 there exists some M such that |an1 − an2 | < whenever n1 ≥ M and n2 ≥ M.

Theorem 8.2.1 (a) A monotone sequence converges to some real number if and only if it is a bounded sequence.

(b) A sequence is convergent if and only if it is a Cauchy sequence.

Proof.

Part (a) Suppose that an ≤ an+1 ≤ B for all n ≥ M and some B. Let L be the least upper bound of the sequence {an}n=m. Let > 0 be given. Then there exists some natural number N such that

L − < aN ≤ L.

Then for each n ≥ N, we have

L − < aN ≤ an ≤ L.

By definition {an}n=m converges to L.

Similarly, suppose that B ≤ an+1 ≤ an for all n ≥ M. Let L be the greatest lower bound of {an}n=m. Then {an}n=m converges to L. It follows that a bounded monotone sequence converges. Conversely, suppose that a

8.2. MONOTONE SEQUENCES

321

monotone sequence {an}n=m converges to L. Let = 1. Then there exists some natural number N such that if n ≥ N, then

|an − L| < − < an − L < L − < an < L + .

The set {an : m ≤ n ≤ N} is bounded and the set {an : n ≥ N} is bounded. It follows that {an}n=m is bounded. This completes the proof of Part (a) of the theorem.

Part (b) First, let us suppose that {an}n=m converges to L. Let > 0 be given. Then 2 > 0 and hence there exists some natural number N such that for all natural numbers p ≥ N and q ≥ N, we have

|ap − L| <

 

and |aq − L| <

 

 

 

2

2

|ap − aq| = |(ap − L) + (L + aq)|

|ap − L| + |a1 − L|

<2 + 2

= .

It follows that {an}n=m is a Cauchy sequence.

Next, we suppose that {an}n=m is a Cauchy sequence. Let S = {an : m ≤ n < ∞}. Suppose > 0. Then there exists some natural number N such

that for all p ≥ 1

 

 

 

 

 

 

 

 

 

|aN+p − aN | <

 

, aN

 

< aN+p < aN +

 

(1)

 

 

 

 

 

 

2

2

2

It follows that S is a bounded set. If S is an infinite set, then S has some limit point q and some subsequence {ank }k=1 of {an}n=m that converges to q. Since > 0, there exists some natural number M such that for all k ≥ M, we have

|ank − q| <

 

(2)

2

322 CHAPTER 8. INFINITE SERIES

Also, for all k ≥ N + M, we get nk ≥ k ≥ N + M and

|ak − q| = |ak − ank + ank − q| ≤ |ank − ak| + |ank − q|

<

 

 

+ 2

(by (1) and (2))

2

 

 

 

= .

It follows that the sequence {an}n=m converges to q. If S is a finite set, then some ak is repeated infinite number of times and hence some subsequences of {an}n=m converges to ak. By the preceding argument {an}n=m also converges to ak. This completes the proof of this theorem.

Theorem 8.2.2 Let {f(n)}n=m be a sequence where f is a di erentiable function defined for all real numbers x ≥ m. Then the sequence {f(n)}n=m is

(a)increasing if f0(x) > 0 for all x > m;

(b)decreasing if f0(x) < 0 for all x > m;

(c)nondecreasing if f0(x) ≥ 0 for all x > m;

(d)nonincreasing if f0(x) ≤ 0 for all x > m.

Proof. Suppose that m ≤ a < b. Then by the Mean Value Theorem for derivatives, there exists some c such that a < c < b and

f(b) − f(a) = f0(c), b − a

f(b) = f(a) + f0(c)(b − a).

The theorem follows from the above equation by considering the value of f0(c). In particular, for all natural numbers n ≥ m,

f(n + 1) = f(n) + f0(c),

for some c such that n < c < n + 1.

Part (a). If f0(c) > 0, then f(n + 1) > f(n) for all n ≥ m. Part (b). If f0(c) < 0, then f(n + 1) < f(n) for all n ≥ m. Part (c). If f0(c) ≥ 0, then f(n + 1) ≥ f(n) for all n ≥ m. Part (d). If f0(c) ≤ 0, then f(n + 1) ≤ f(n) for all n ≤ m.

This completes the proof of this theorem.

8.3. INFINITE SERIES

323

8.3Infinite Series

Definition 8.3.1 Let {tn}n=1 be a given sequence. Let

n

X s1 = t1, s2 = t1 + t2, s3 = t1 + t2 + t3, · · · , sn = tk,

k=1

for all natural number n. If the sequence {sn}n=1 converges to a finite number

L, then we write

X

L = t1 + t2 + t3 + · · · = tk.

k=1

n

X

We call tk an infinite series and write

k=1

n

XX

 

tk = lim

tk = L.

k=1

n→∞

k=1

We say that L is the sum of the series and the series converges to L. If a series does not converge to a finite number, we say that it diverges. The sequence {sn}n=1 is called the sequence of the nth partial sums of the series.

Theorem 8.3.1 Suppose that a and r are real numbers and a 6= 0. Then the geometric series

a + ar + ar2 + · · · = Xark = 1 −a r,

k=0

if |r| < 1. The geometric series diverges if |r| ≥ 1.

Proof. For each natural number n, let

sn = a + ar + · · · + arn−1.

On multiplying both sides by r, we get

rsn = ar + ar2 + · · · + arn−1 + arn

sn − rsn = a − arn

 

 

 

(1 − r)sn = a(1 − rn)

 

 

 

sn =

a

a

 

rn.

1 r

1

r

 

 

 

324

 

 

 

 

 

CHAPTER 8. INFINITE SERIES

 

If |r| < 1, then

 

a

 

 

 

a

 

 

 

a

 

 

nlim sn =

 

 

 

nlim rn =

.

 

1

 

r

1 r

1 r

 

→∞

 

 

 

→∞

 

 

If |r| > 1, then nlim rn is not finite and so the sequence {sn}n=1 of nth partial

 

→∞

 

 

 

 

 

 

 

 

 

 

 

 

sums diverges.

 

 

 

 

 

 

 

 

 

 

 

 

If r = 1, then sn = na and

 

lim na is not a finite number.

 

 

 

 

n→∞

 

 

 

 

 

 

 

This completes the proof of the theorem.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Xk

=

Theorem 8.3.2 (Divergence Test) If the series

tk converges, then lim tn

 

 

 

 

 

 

 

 

=1

 

n→∞

 

0. If nlim→∞ tn 6= 0, then the series diverges.

 

 

 

 

 

Proof. Suppose that the series converges to L. Then

 

n→∞

n = n→∞

n

k −

k!

 

 

 

 

 

 

 

n−1

 

 

 

 

lim

a

 

lim

X

Xk

a

 

 

 

 

a

 

 

 

 

 

 

 

k=1

=1

 

 

 

 

 

 

 

 

 

 

n

 

n−1

 

 

 

 

 

 

 

X

 

X

 

 

 

= nlim

ak nlim

 

ak

 

 

 

 

 

→∞

k=1

→∞

k=1

 

= L − L

= 0.

The rest of the theorem follows from the preceding argument. This completes the proof of this theorem.

Theorem 8.3.3 (The Integral Test) Let f be a function that is defined, continuous and decreasing on [1, ∞) such that f(x) > 0 for all x ≥ 1. Then

Z

X

 

f(n) and

f(x)dx

n=1

1

 

either both converge or both diverge.

 

Proof. Suppose that f is decreasing and continuous on [1, ∞), and f(x) > 0 for all x ≥ 1. Then for all natural numbers n, we get,

n+1 f(k) ≤ Z n+1 f(x)dx ≤

n

f(k)

X

X

 

k=2

1

k=1

 

8.3. INFINITE SERIES

325

graph

It follows that,

k=2 f(k) ≤ Z1

f(x)dx ≤ k=1 f(k).

X

X

Since f(1) is a finite number, it follows that

Z

Xk

f(x)dx

f(k) and

=1

1

 

either both converge or both diverge. This completes the proof of the theorem.

Theorem 8.3.4 Suppose that p > 0. Then the p-series

X 1

np

n=1

converges if p > 1 and diverges if

series P1 diverges.

n=1 n

0 < p ≤ 1. In particular, the harmonic

Proof. Suppose that p > 0. Then

1

 

 

 

 

 

 

 

 

 

 

Z1

 

dx = Z1

 

x−pdx

 

 

 

 

 

xp

 

 

 

 

 

 

 

 

=

 

x1

p

 

 

 

 

 

 

 

 

1

 

p

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

p

 

 

 

 

=

 

 

 

 

 

 

lim

x

 

1 .

 

 

1 − p

 

 

 

 

 

x→∞

 

 

 

 

It follows that the integral converges if p > 1 and diverges if p < 1. If p = 1,

then

1

 

 

= ∞.

Z

1 x

dx = ln x 1

 

 

 

Hence, the p-series converges if p > 1 and diverges if 0 < p ≤ 1. This completes the proof of this theorem.

326

CHAPTER 8. INFINITE SERIES

Exercises 8.1

1.Define the statement that the sequence {an}n=1 converges to L.

2.Suppose the sequence {an}n=1 converges to L and the sequences {bn}n=1 converges to M. Then prove that

(a){can}n=1 converges to cL, where c is constant.

(b){an + bn}n=1 converges to L + M.

(c){an − bn}n=1 converges to L − M.

(d){anbn}n=1 converges to LM.

(e)an converges to L , if M 6= 0. bn n=1 M

3.Suppose that 0 < an ≤ an+1 < M for each natural number n. Then prove that

(a){an}n=1 converges.

(b){−an}n=1 converges.

(c)akn n=1 converges for each natural number k.

 

 

 

 

 

 

 

 

 

 

 

xn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

Prove that

 

 

n=1 converges to 0 for every real number x.

 

 

n!

 

 

 

Prove that

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.

!

 

n=1 converges to 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.

Prove that for each natural number n ≥ 2,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

(a)

 

 

+

 

 

+ · · ·

 

+

 

 

< ln(n) < 1 +

 

+ · · ·

+

 

 

 

 

.

 

 

 

 

 

 

 

2

3

 

n

2

n − 1

 

 

 

 

 

 

 

(b)

 

1

+

 

1

+

· · ·

+

 

1

<

1n

1

dt < 1 +

 

1

 

+

· · ·

 

+

 

1

 

 

for each

 

 

p

 

 

p

p

p

 

p

 

 

 

p

 

 

p > 0.

 

 

 

 

 

 

 

 

 

n

R

2

 

 

 

 

 

 

(n

1)

 

 

 

 

2

3

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k=1

 

 

 

 

 

n=1

 

 

 

 

 

 

 

 

 

 

n

Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)

 

 

X

 

k1p )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

t1p

dt

converges. De-

 

( n

 

 

converges if and only if

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

 

1

 

 

n=1

 

 

 

 

 

 

 

 

termine the numbers p for which (n=1

 

 

kp

)

converges.