Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
_eBook__-_Math_Calculus_Bible.pdf
Скачиваний:
8
Добавлен:
23.08.2019
Размер:
1.23 Mб
Скачать

7.2. DISCONTINUITIES AT END POINTS

299

Then F (b) −F (a) represents the percentage of normally distributed data that lies between a and b. This percentage is given by

 

Zab f(x)dx.

 

 

Furthermore,

 

 

 

 

 

µ+bσ

b

1

2

 

Zµ+aσ

f(x)dx = Za

 

e−x

/2dx.

Proof. The proof of this theorem is omitted.

Exercises 7.1 None available.

7.2Discontinuities at End Points

Definition 7.2.1 (i) Suppose that f is continuous on [a, b) and

lim f(x) = +∞ or − ∞.

x→b

Then, we define

Z b Z x

f(x)dx = lim f(x)dx.

ax→ba

If the limit exists, we say that the improper integral converges; otherwise we say that it diverges.

(ii) Suppose that f is continuous on (a, b] and

x→a+

or

− ∞

lim f(x) = +

.

Then we define,

 

Z b f(x)dx.

Z b f(x)dx =

lim

ax→a+ x

If the limit exists, we say that the improper integral converges; otherwise we say that it diverges.

Exercises 7.2

1.Suppose that f is continuous on (−∞, ∞) and g0(x) = f(x). Then define each of the following improper integrals:

300CHAPTER 7. IMPROPER INTEGRALS AND INDETERMINATE FORMS

Z+∞

(a)f(x)dx

a

Zb

(b)f(x)dx

−∞

Z+∞

(c)f(x)dx

−∞

2.Suppose that f is continuous on the open interval (a, b) and g0(x) = f(x) on (a, b). Define each of the following improper integrals if f is not continuous at a or b:

Zx

(a)f(x)dx, a ≤ x < b

a

Zb

(b)f(x)dx, a < x ≤ b

x

Zb

(c)f(x)dx

a

3.

Prove that Z0

+∞ e−xdx = 1

 

 

 

 

 

 

 

Prove that Z0

1

 

 

 

 

1

 

 

 

 

 

 

π

 

 

 

4.

 

 

 

 

 

dx =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

1

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+∞

1

 

 

 

 

 

 

 

 

 

 

 

5.

Prove that Z−∞

 

 

 

dx = π

 

 

 

 

1 + x2

 

 

 

6.

Prove that Z1

1

dx =

1

 

, if and only if p > 1.

 

 

 

 

 

 

 

 

xp

p − 1

 

 

 

+∞

2

 

 

 

 

 

 

 

2

 

7.

Show that Z−∞

e−x

dx = 2 Z0

e−x

dx. Use the comparison between

 

2

 

 

 

 

 

 

 

 

 

 

 

+∞

2

 

 

 

e−x and e−x

. Show that

Z−∞

 

e−x

dx exists.

8.

Prove that Z0

1 dx

converges if and only if p < 1.

 

xp

 

7.2.

DISCONTINUITIES AT END POINTS

301

9.

Evaluate Z0

+∞ e−x sin(2x)dx.

 

10.

Evaluate Z0

+∞ e−4x cos(3x)dx.

 

11.

Evaluate Z0

+∞ x2e−xdx.

 

12.

Evaluate Z0

+∞ xe−xdx.

 

13.

Prove that Z0

sin(2x)dx diverges.

 

14.

Prove that Z0

cos(3x)dx diverges.

 

15.Compute the volume of the solid generated when the area between the graph of y = e−x2 and the x-axis is rotated about the y-axis.

16.Compute the volume of the solid generated when the area between the graph of y = e−x, 0 ≤ x < ∞ and the x-axis is rotated

(a)about the x-axis

(b)about the y-axis.

17.Let A represent the area bounded by the graph y = x1, 1 ≤ x < ∞ and the x-axis. Let V denote the volume generated when the area A is rotated about the x-axis.

(a)show that A is +∞

(b)show that V = π

(c)show that the surface area of V is +∞.

(d)Is it possible to fill the volume V with paint and not be able to paint its surface? Explain.

18.Let A represent the area bounded by the graph of y = e−2x, 0 ≤ x < ∞, and y = 0.

24. f(t) = t3
26. f(t) = ebt
28. f(t) = tnebt, n = 1, 2, 3, · · ·

302CHAPTER 7. IMPROPER INTEGRALS AND INDETERMINATE FORMS

(a)Compute the area of A.

(b)Compute the volume generated when A is rotated about the x-axis.

(c)Compute the volume generated when A is rotated about the y-axis.

 

+∞

 

 

 

 

p

 

 

 

+∞ sin x

19.

Assume that Z0

sin(x2)dx = (π/8). Compute

Z0

 

 

dx.

 

x

 

 

+∞

 

 

2

 

 

 

 

 

 

 

 

 

 

 

20.

It is known that Z−∞

e−x

 

=

π.

 

 

 

 

 

 

(a) Compute Z0

+∞ e−x2 dx.

 

 

 

 

 

 

 

 

 

 

 

 

(b) Compute Z0

+∞ e−x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx.

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

(c) Compute Z0

+∞ e−4x2 dx.

 

 

 

 

 

 

 

 

 

 

Definition 7.2.2 Suppose that f(t) is continuous on [0, ∞) and there exist some constants a > 0, M > 0 and T > 0 such that |f(t)| < Meat for all t ≥ T . Then we define the Laplace transform of f(t), denoted L{f(t)}, by

Z

L{f(t)} = e−stf(t)dt

0

for all s ≥ s0. In problems 21–34, compute L{f(t)} for the given f(t).

21. f(t) =

1

if t ≥ 0

22. f(t) = t

 

(0

if t < 0

 

23. f(t) = t2

25. f(t) = tn, n = 1, 2, 3, · · ·

27. f(t) = tebt

7.2. DISCONTINUITIES AT END POINTS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

303

29.

f(t) =

 

eat − ebt

 

 

 

 

 

 

 

 

 

 

30.

f(t) =

aeat − bebt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a − b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a − b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31.

f(t) =

 

1

sin(bt)

 

 

 

 

 

 

 

 

32.

f(t) = cos(bt)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33.

f(t) =

1

 

sinh(bt)

 

 

 

 

 

 

 

 

34.

f(t) = cosh(bt)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 7.2.3 For x > 0, we define the Gamma function (x) by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x) = Z0

+∞ tx−1e−tdt.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+∞

 

 

 

2

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In problems 35–40 assume that (x) exists for x > 0 and Z0

e−x

 

=

 

 

 

 

π.

 

2

 

35.

Show that (1/2) =

 

 

 

 

 

 

 

36.

Show that (1) = 1

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

37.

Prove that (x + 1) = x (x)

 

 

 

38.

Show that

 

=

 

 

 

 

 

 

 

 

 

2

2

 

 

 

 

39.

Show that

2

 

= 4

π

 

 

 

40.

Show that (n + 1) = n!

 

 

 

 

 

 

 

 

 

5

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In problems 41–60, evaluate the given improper integrals.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+∞

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

+∞

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41.

Z0

2xe−x

dx

 

 

 

 

 

 

 

 

42.

Z1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x3/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+∞

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

+∞

 

4x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43.

Z4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44.

Z1

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x5/2

 

 

 

 

 

 

 

 

 

 

 

 

1 + x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+∞

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

+∞

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45.

Z1

 

 

 

 

dx

 

 

 

 

 

46.

Z16

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 + x2)3/2

 

 

 

 

 

 

x2 − 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+∞

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

+∞

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47.

Z2

 

 

 

dx

 

 

 

 

 

48.

Z2

 

 

dx, p > 1

 

 

 

 

 

 

 

 

 

 

 

 

x(ln x)2

 

 

 

 

 

 

x(ln x)p

 

 

 

 

 

 

 

 

 

 

 

304CHAPTER 7. IMPROPER INTEGRALS AND INDETERMINATE FORMS

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

49.

Z−∞

3xe−x2 dx

 

 

 

50.

Z−∞ ex dx

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

51.

Z0

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

52.

Z−∞

 

 

 

 

 

 

 

 

 

 

 

 

 

ex + e−x

x2 + 9

53.

Z0

2

 

 

dx

 

 

 

 

54.

Z0

4

 

 

x

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 x2

 

 

 

 

 

 

16 x2

 

Z0

 

 

 

 

 

 

 

 

 

 

Z2

 

 

 

 

 

 

55.

5

 

 

 

 

 

x

dx

56.

+∞

 

 

 

x

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(25 − x2)2/3

 

 

 

 

 

 

 

 

 

 

 

x2 − 4

 

 

Z0

+

e

 

 

 

 

 

 

 

Z0

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

57.

 

 

 

 

 

 

 

dx

 

 

 

58.

 

 

 

(x + 25)

 

 

 

 

 

x

 

 

 

 

 

x

59.

Z0

 

 

 

 

e−x

dx

60.

Z0

+∞ x2e−x3 dx

 

 

 

 

 

 

 

 

 

 

1

 

(e−x)2

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3

Theorem 7.3.1 (Cauchy Mean Value Theorem) Suppose that two functions f and g are continuous on the closed interval [a, b], di erentiable on the open interval (a, b) and g0(x) 6= 0 on (a, b). Then there exists at least one number c such that a < c < b and

f0(c) f(b) − f(a) g0(c) = g(b) − g(a) .

Proof. See the proof of Theorem 4.1.6.

Theorem 7.3.2 Suppose that f and g are continuous and di erentiable on an open interval (a, b) and a < c < b. If f(c) = g(c) = 0, g0(x) 6= 0 on (a, b) and

lim f0(x) = L

x→c g0(x)

then

lim f(x) = L.

x→c g(x)

ln(f(x)) (1/g(x)) .
00 or ±∞±∞

7.3. 305

Proof. See the proof of Theorem 4.1.7.

Theorem 7.3.3 (L’Hˆopital’s Rule) Let lim represent one of the limits

lim,

lim ,

lim ,

lim , or

lim .

x→c

x→c+

x→c

x→+∞

x→−∞

Suppose that f and g are continuous and di erentiable on an open interval (a, b) except at an interior point c, a < c < b. Suppose further that g0(x) 6= 0 on (a, b), lim f(x) = lim g(x) = 0 or lim f(x) = lim g(x) = +∞ or −∞. If

 

 

f0(x)

 

 

 

lim

 

 

 

= L, +∞ or − ∞

 

g0(x)

then

 

f(x)

 

f0(x)

 

 

 

 

lim

 

= lim

 

.

 

g(x)

g0(x)

Proof. The proof of this theorem is omitted.

Definition 7.3.1 (Extended Arithmetic) For the sake of convenience in dealing with indeterminate forms, we define the following arithmetic operations with real numbers, +∞ and −∞. Let c be a real number and c > 0. Then we define

+ ∞ + ∞ = +∞, −∞ − ∞ = −∞, c(+∞) = +∞, c(−∞) = −∞

( c)(+ ) =

,

( c)(

) = + ,

 

c

= 0,

 

−c

= 0,

 

c

= 0,

+

+

 

 

 

 

−∞

 

−∞

 

 

 

−∞

 

−c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 0, (+∞)c = +∞,

 

(+∞)−c = 0, (+∞)(+∞) = +∞, (+∞)(−∞) = −∞,

 

−∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(−∞)(−∞) = +∞.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 7.3.2 The following operations are indeterminate:

 

 

 

 

 

 

0

,

+∞

,

 

+∞

 

−∞

,

−∞

,

, 0

 

, 00, 1,

0.

 

 

 

0

 

 

 

 

 

 

 

 

 

+∞ −∞ −∞

 

+∞

∞ − ∞

· ∞

 

 

 

 

Remark 23 The L’Hˆopital’s Rule can be applied directly to the 00 and ±∞±∞ forms. The forms ∞ − ∞ and 0 · ∞ can be changed to the by using arithmetic operations. For the 00 and 1forms we use the following procedure:

lim(f(x))g(x) = lim eg(x) ln(f(x)) = elim

It is best to study a lot of examples and work problems.

306CHAPTER 7. IMPROPER INTEGRALS AND INDETERMINATE FORMS

Exercises 7.3

1.Prove the Theorem of the Mean: Suppose that a function f is continuous on a closed and bounded interval [a, b] and f0 exists on the open interval (a, b). Then there exists at least one number c such that a < c < b and

(1)

f(b)

− f(a)

= f0(c)

(2) f(b) = f(a) + f0(c)(b

a).

b

 

a

 

 

 

 

 

 

 

 

 

 

2. Prove the Generalized Theorem of the Mean: Suppose that f and g are continuous on a closed and bounded interval [a, b] and f0 and g0 exist on the open interval (a, b) and g0(x) 6= 0 for any x in (a, b). Then there exists some c such that a < c < b and

f(b) − f(a)

 

=

f0(c)

.

 

 

g(b)

g(a)

 

g0(c)

 

 

 

 

 

 

3.Prove the following theorem known as l’Hˆopital’s Rule: Suppose that f and g are di erentiable functions, except possibly at a, such that

lim f(x) = 0,

lim g(x) = 0,

and

lim

f(x)

= L.

g(x)

 

x→a

x→a

 

 

 

x→a

 

Then

 

 

 

f0(x)

 

 

 

 

lim

f(x)

= lim

= L.

 

 

 

 

g(x)

g0(x)

 

 

 

 

x→a

 

x→a

 

 

 

 

4.Prove the following theorem known as an alternate form of l’Hˆopital’s Rule: Suppose that f and g are di erentiable functions, except possibly at a, such that

lim f(x) =

,

lim g(x) =

, and lim

f0(x)

= L.

g0(x)

 

x→a

 

x→a

 

 

 

 

x→a

 

Then

 

 

 

 

 

 

 

f0(x)

 

 

 

 

 

 

lim

f(x)

= lim

 

= L.

 

 

 

 

 

g(x)

 

g0(x)

 

 

 

 

 

 

x→a

x→a

 

 

 

 

 

7.3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

307

5. Prove that if f0 and g0 exist and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

f(x) = 0,

lim g(x) = 0,

 

and

lim

f0(x)

= L,

 

g0(x)

 

x→+∞

 

 

x→+∞

 

 

 

 

 

x→+∞

 

 

 

then

 

 

 

 

f(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

= L.

 

 

 

 

 

 

 

 

 

 

 

 

 

g(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x→+∞

 

 

 

 

 

 

 

 

 

 

 

6. Prove that if f0 and g0 exist and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim f(x) = 0,

lim g(0) = 0,

 

and

lim

f0(x)

 

= L,

 

 

 

x→−∞

 

 

x→+∞

 

 

 

 

 

x→−∞ g0(x)

 

 

 

then

 

 

 

 

f(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

= L.

 

 

 

 

 

 

 

 

 

 

 

 

 

g(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

x→−∞

 

 

 

 

 

 

 

 

 

 

 

7. Prove that if f0 and g0 exist and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

f(x) =

,

lim g(x) =

,

and

lim

 

f0(x)

= L,

 

g0(x)

 

x→+∞

 

 

x→+∞

 

 

 

x→+∞

 

 

then

 

 

 

 

f(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

= L.

 

 

 

 

 

 

 

 

 

 

 

 

 

g(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x→+∞

 

 

 

 

 

 

 

 

 

 

 

8. Prove that if f0 and g0

exist and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x lim

f(x) = ∞,

x lim g(x) = ∞,

and

x lim

 

f0(x)

= L,

 

g0(x)

 

→−∞

 

 

 

→−∞

 

 

 

 

 

→−∞

 

 

 

 

 

 

 

then

 

 

 

 

f(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

= L.

 

 

 

 

 

 

 

 

 

 

 

 

 

g(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x→+∞

 

 

 

 

 

 

 

 

 

 

 

9.Suppose that f0 and f00 exist in an open interval (a, b) containing c. Then prove that

lim

f(c + h) − 2f(c) + f(c − h)

= f00(c).

h2

h→0

 

308CHAPTER 7. IMPROPER INTEGRALS AND INDETERMINATE FORMS

10. Suppose that f0 is continuous in an open interval (a, b) containing c. Then prove that

lim f(c + h) − f(c − h) = f0(c).

h→0 2h

11. Suppose that f(x) and g(x) are two polynomials such that

f(x) = a0xn + a1xn−1 + · · · + an−1x + an, a0 6= 0, g(x) = b0xm + b1xm−1 + · · · + bm−1x + bm, b0 6= 0.

Then prove that

+ or

 

lim f(x) =

if m < n

 

 

 

 

0

if m > n

 

∞ − ∞

 

x→+∞ g(x)

if m = n

 

 

 

a0/b0

 

 

 

 

 

 

12.Suppose that f and g are di erentiable functions, except possibly at c, and

lim f(x) = 0,

lim

g(x) = 0 and lim g(x) ln(f(x)) = L.

x→c

x→c

x→c

Then prove that

 

 

 

 

lim (f(x))g(x) = eL.

 

 

x→c

13.Suppose that f and g are di erentiable functions, except possibly at c, and

lim f(x) = +

,

lim g(x) = 0 and

lim g(x) ln(f(x)) = L.

x→c

 

x→c

x→c

Then prove that

lim (f(x))g(x) = eL.

x→c

14.Suppose that f and g are di erentiable functions, except possibly at c, and

lim f(x) = 1,

lim g(x) = +

and

lim g(x) ln(f(x)) = L.

x→c

x→c

 

x→c

Then prove that

lim (f(x))g(x) = eL.

x→c

7.3.

309

15.Suppose that f and g are di erentiable functions, except possibly at c, and

 

lim f(x) = 0,

 

 

lim g(x) = +

and

lim

f(x)

=

L.

 

 

 

 

 

 

 

 

(1/g(x))

 

x→c

 

 

 

 

 

 

 

 

x→c

x→c

 

 

Then prove that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim f(x)g(x) = L.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x→c

 

 

 

 

 

 

16.

 

 

 

 

 

 

 

 

 

1

= e.

 

 

 

 

 

 

Prove that lim (1 + x)x

 

 

 

 

 

 

 

 

x→0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

 

 

 

 

 

 

17.

Prove that lim (1

x)x

=

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x→0

 

 

 

 

 

 

e

 

 

 

 

 

 

18.

Prove that

lim

 

 

xn

= 0 for each natural number n.

 

 

 

 

ex

 

 

 

 

 

 

x→+∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19.

Prove that

lim

sin x − x

= 0.

 

 

 

 

 

 

 

 

x→0+

 

x sin x

 

 

 

 

 

 

 

 

 

 

20.

Prove that lim

π

x

tan x = 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x→π2

2

 

 

 

 

 

 

 

 

 

 

 

In problems 21–50 evaluate each of the limits.

21.

lim

sin(x2)

 

22.

lim

1 − cos x2

x2

 

x2

 

x→0

 

x→0

 

23.

lim

sin(ax)

24.

lim

tan(mx)

sin(bx)

 

tan(nx)

 

 

x→0

 

x→0

25.

lim

e3x − 1

 

26.

lim (1 + 2x)3/x

x

 

x→0

 

x→0

 

 

 

27.

lim

ln(x + h) − ln(x)

28.

lim

ex+h − ex

 

h→0

 

 

h

 

h→0

 

h

29.

lim (1 + mx)n/x

30.

lim

 

ln(100 + x)

 

x

 

x→0

 

 

 

 

x→∞

 

310CHAPTER 7. IMPROPER INTEGRALS AND INDETERMINATE FORMS

31. lim (1 + sin mx)n/x

x→0

33.lim (x)sin x

x→0+

35.lim tan(2x) ln(x)

x→0+

37.

lim (x + ex)2/x

 

 

 

 

 

 

 

 

x→0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39.

lim (1 + sin mx)n/x

 

 

 

 

x→0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41.

lim

 

(e3x

1)2/ ln x

 

 

 

 

x→0+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43.

lim

 

 

cot(ax)

 

 

 

 

 

 

 

 

 

 

cot(bx)

 

 

 

 

 

 

 

 

 

x→0+

 

 

 

 

 

 

 

 

 

 

45.

lim

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln x

 

 

 

 

 

 

 

 

 

 

 

x→0+

 

 

 

 

 

 

 

 

 

 

 

 

47.

lim

 

 

 

 

2x + 3 sin x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x→+∞ 4x + 2 sin x

 

 

 

49.

h→0

 

 

 

bx+h

 

bx

 

 

0

6= 1

 

h

 

 

 

lim

 

 

 

 

 

 

 

 

 

, b >

, b

 

51.

lim

 

(ex − 1) sin x

 

 

 

 

 

 

cos x − cos2 x

 

 

 

 

x→0

 

 

 

 

53.

lim

 

 

 

 

sin 5x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − cos 4x

 

 

 

 

x→0+

 

 

 

 

 

55.

x→+∞

 

ex + 1

 

 

 

ex

 

 

 

lim

 

 

 

ex ln

 

 

 

 

 

 

 

 

 

32.lim (sin x)x

x→0+

34. lim

x4 − 2x3 + 10

x→∞ 3x4 + 2x3 − 7x + 1

36.

lim

x sin

 

 

x

 

 

 

 

x→+∞

 

 

 

 

 

 

 

 

 

38.

 

3 + 2x

 

x

x→∞ 4 + 2x

 

 

 

 

lim

 

 

 

 

 

 

 

 

 

 

40.

lim (x)sin(3x)

 

 

 

 

 

x→0+

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

lim

 

 

 

 

 

 

 

 

 

 

42.

x→0

x2

 

 

x2

44.

lim

ln x

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

x→+∞

 

 

 

 

 

 

 

2

 

 

lim

1

 

 

 

 

 

46.

x→0+

x ln x

48.lim x(b1/x − 1), b > 0, b 6= 1

x→+∞

50. lim

logb(x + h) − logb x

, b > 0, b = 1

h

0

h

6

 

 

 

 

52.

lim

x ln

x + 1

 

x − 1

 

x→+∞

54.

lim

2x − 3x6 + x7

(1 − x)3

 

x→1

56.

lim

tan x − sin x

 

 

x→0

x3

 

 

7.3.

57. lim

x3 sin 2x

x→0 (1 − cos x)2

59.

lim

 

1

 

ln

 

 

1 + x

 

 

 

 

 

 

 

 

x

 

 

 

1 − x

 

 

 

 

 

 

x→0

 

 

 

 

 

 

 

 

 

 

61.

lim

 

sin(π cos x)

 

 

 

 

 

 

 

 

 

 

x sin x

 

 

 

 

 

 

 

 

 

x→0

 

 

 

 

 

 

 

 

 

 

 

63.

lim

 

 

 

(ln x)n

, n = 1, 2,

· · ·

 

 

 

 

 

 

 

x→+∞

 

x

 

 

 

 

 

 

 

 

 

 

 

65.

lim

 

 

 

 

ln x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 + x3)1/2

 

 

 

 

 

 

x→+∞

 

 

 

 

 

 

67.

lim

(1

3−x)−2x

 

 

 

 

 

x→0+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

69.

lim

 

 

(e−x + e−2x)1/x

 

 

 

 

 

x→+∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

71.

x→0+

 

ln

 

 

 

 

 

 

 

x

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

lim

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

73.

 

 

 

 

 

1

 

3x+ln x

 

 

 

x→+∞

 

 

 

 

 

 

 

 

 

2x

 

 

 

 

 

 

 

 

lim

 

 

 

1 +

 

 

 

 

 

 

 

 

 

 

 

 

75.

x→+∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 + b2

 

 

lim

 

 

 

x

 

x

 

 

 

77.

x→2

x − 2 x2 + x − 6

 

lim

 

 

 

1

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

lim

cot x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

79.

 

 

x

 

 

 

 

 

 

 

x→0

 

 

 

 

 

 

 

 

 

 

 

 

311

58.

lim

5x − 3x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x→0

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60.

lim

 

arctan x − x

 

 

 

 

 

 

 

x→0

 

 

 

 

 

 

 

x3

 

 

 

 

 

 

 

 

 

 

 

62.

lim

 

 

 

 

ln(1 + xe2x)

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

x→+∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64.

 

 

 

 

1

 

ln

x + e2x

 

x→+∞ x

 

 

 

 

 

x

 

lim

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln(tan 3x)

 

 

 

 

 

 

 

 

66.

lim

 

 

 

 

 

 

 

 

 

 

 

ln(tan 4x)

 

 

 

 

 

 

 

 

 

x→0+

 

 

 

 

 

 

 

 

 

 

68.

x→0

 

sin x

 

1/x2

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

70.

lim

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

x→+∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos x

 

 

lim

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

72.

x→+∞

 

 

 

 

1

 

 

 

x2

 

 

 

2x

 

 

 

 

 

 

 

lim

 

1 +

 

 

 

 

 

 

 

 

 

 

lim

1

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

74.

 

 

 

x sin 2x

 

 

 

 

 

 

x→0

 

 

 

 

 

 

 

lim

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76.

 

 

 

x sin x x2

 

x→0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

78.

x→0+

 

 

x − ln

x

 

 

lim

1

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80.

 

 

 

x2 tan2 x

 

x→0

 

 

 

 

312CHAPTER 7. IMPROPER INTEGRALS AND INDETERMINATE FORMS

81.

x→0

 

 

e−x

 

 

1

 

 

x

ex − 1

 

lim

 

 

 

 

 

 

 

 

 

 

 

 

x2 sin

 

1

 

 

 

 

 

 

 

 

sin

x

 

83.

lim

 

 

 

 

 

 

 

 

 

 

 

x 0

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85.

lim

 

e − (1 + x)1/x

 

 

 

x→0

 

 

 

 

x

 

 

 

 

 

lim

 

1

 

1

 

 

 

87.

 

x2 x ln x

 

x→0+

 

 

89.

lim

(ln(1 + ex)

x)

x→+∞

 

 

 

 

 

82.

lim

x − sin x

 

 

 

 

 

 

x→∞

 

 

 

x

 

 

 

 

 

 

 

 

 

x→∞

 

 

 

 

x

 

 

 

 

84.

lim x sin

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86.

lim

 

 

ln(ln x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln(x − ln x)

 

 

x→+∞

 

 

88.

x→+∞

1

 

 

x

 

 

ln t

 

 

x Z1

 

1 + t

 

 

lim

 

 

 

 

 

 

 

 

x

 

 

dt

 

90.

x→+∞ x2

 

 

 

 

sin

Z0

 

lim

1

 

 

 

 

 

 

 

 

2 x dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91.Suppose that f is defined and di erentiable in an open interval (a, b). Suppose that a < c < b and f00(c) exists. Prove that

 

 

f00(c) = lim

f(x) − f(c) − (x − c)f0(c)

.

 

 

 

 

 

 

 

 

 

 

x→c

((x − c)2/2!)

 

 

 

 

 

 

 

92. Suppose that f is defined and f0, f00,

· · ·

(n)

 

 

 

 

 

 

 

 

 

, f(n−1) exist in an open interval

(a, b). Also, suppose that a < c < b and f (c) exists

 

 

 

 

 

 

 

(a) Prove that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f(x) − f(c) − (x − c)f0(c) − · · · −

(x−c)n−1

 

n

1

 

 

 

(n)

 

 

 

(n−1)!

f

 

(c)

f

 

(c) = lim

 

 

 

 

(x−c)

n

 

 

 

 

 

 

.

 

 

x

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n!

 

 

 

 

 

 

 

 

(b)Show that there is a function En(x) defined on (a, b), except possibly at c, such that

f(x) = f(c) + (x − c)f0(c) + · · · + (x − c)n−1 f(n−1)(x) (n − 1)!

+ (x − c)n f(n)(c) + En(x) (x − c)nEn(x) n! n!

7.3.

313

and lim En(x) = 0. Find E2(x) if c = 0 and

n→c

 

f(x) = (x4 sin x1

, x 6= 0

0, x = 0

(c)If f0(c) = · · · = f(n−1)(c) = 0, n is even, and f has a relative minimum at x = c, then show that f(n)(c) ≥ 0. What can be said if f has a relative maximum at c? What are the su cient conditions for a relative maximum or minimum at c when f0(c) = · · · = f(n−1)(c) = 0?

What can be said if n is odd and f0(c) =

· · ·

= f(n−1)

(c) = 0 but

f(n)(c) 6= 0.

 

 

93.Suppose that f and g are defined, have derivatives of order 1, 2, · · · , n−1 in an open interval (a, b), a < c < b, f(n)(c) and g(n)(c) exist and g(n)(c) 6= 0. Prove that if f and g, as well as their first n − 1 derivatives are 0, then

Evaluate the following limits:

94.

x→0

 

x2 sin 1

 

x

 

lim

 

x

 

 

 

 

 

96. lim x(1−1x )

x→1

98. lim

xx − x

x→1+ 1 − x + ln x

 

f(x)

f(n)(c)

lim

 

=

 

.

 

 

x→c

g(x)

g(n)(c)

cos

 

 

 

 

 

 

π cos x

95. lim

 

 

2

 

 

 

sin

2

x

x 0

 

 

 

 

 

97.lim x(ln(x))n, n = 1, 2, 3, · · ·

x→0+

99. lim

x3/2 ln x

x→+∞ (1 + x4)1/2

100.

x→+∞

xn

ln

1 + ex

 

 

= 1 2 · · ·

ex

 

 

lim

 

 

 

 

, n

, ,

 

x

1R

x e−t2 dx

 

 

 

 

x→0

− e−x2

 

 

 

101.

lim

 

 

0