Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
_eBook__-_Math_Calculus_Bible.pdf
Скачиваний:
8
Добавлен:
23.08.2019
Размер:
1.23 Mб
Скачать

1.3.

INVERSE TRIGONOMETRIC FUNCTIONS

 

 

 

 

 

19

9.

If f(x) = cos x, prove that

 

 

cos h

 

 

− sin x

 

 

 

.

 

 

 

h

f(x)

 

= cos x

− 1

h

 

 

f(x + h)

 

 

 

 

 

 

 

h

 

 

 

 

 

 

 

 

sin h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.

If f(x) = sin x, prove that

 

 

cos h

 

 

+ cos x

 

 

 

.

 

( +

h

f(x)

 

= sin x

− 1

h

 

 

f x

h)

 

 

 

 

 

 

 

h

 

 

 

 

 

 

 

 

sin h

 

 

 

11.

If f(x) = cos x, prove that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x − t

 

 

 

 

 

 

x − t

 

 

x − t

 

 

f(x) − f(t)

= cos t

 

 

cos(x − t) −

1

 

 

sin t

 

sin(x − t)

.

 

 

 

 

 

 

 

 

 

 

12.

If f(x) = sin x, prove that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x − t

 

 

 

 

 

 

x − t

 

 

 

 

x − t

 

 

f(x) − f(t)

= sin t

 

cos(x

− t) −

1

 

+ cos t

 

sin(x − t)

.

 

 

 

 

 

 

 

 

 

 

13.

Prove that

 

 

 

 

 

 

 

 

 

 

1 − tan2 t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos(2t) =

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + tan2 t

 

 

 

 

 

 

 

 

14. Prove that if y = tan x2 , then

(a) cos x =

1

− u2

(b) sin x =

2u

1

+ u2

1 + u2

 

 

1.3Inverse Trigonometric Functions

None of the trigonometric functions are one-to-one since they are periodic. In order to define inverses, it is customary to restrict the domains in which the functions are one-to-one as follows.

20

 

 

 

 

 

 

CHAPTER 1.

FUNCTIONS

1. y = sin x, −

π

 

π

 

 

 

 

 

 

 

 

 

 

≤ x ≤

 

, is one-to-one and covers the range −1 ≤ y ≤ 1.

2

2

Its inverse function is denoted

arcsin x, and we define y = arcsin x,

1

 

π

 

π

 

 

x ≤ 1, if and only if, x = sin y, −

 

≤ y ≤

 

.

 

 

 

 

2

2

 

 

 

 

graph

2. y = cos x, 0 ≤ x ≤ π, is one-to-one and covers the range −1 ≤ y ≤ 1. Its inverse function is denoted arccos x, and we define y = arccos x, −1 ≤ x ≤ 1, if and only if, x = cos y, 0 ≤ y ≤ π.

graph

 

2

 

 

 

2

 

 

 

 

 

−∞

 

3. y = tan x,

−π

< x <

π

, is one-to-one and covers the range

 

<

 

 

 

y < ∞ Its inverse function is denoted arctan x, and we define y =

 

−∞

 

 

 

 

 

2

2

 

 

 

arctan x,

 

 

< x <

 

, if and only if, x = tan y,

−π

< y <

π

.

 

 

 

 

 

 

 

 

 

graph

4. y = cot x, 0, x < π, is one-to-one and covers the range −∞ < y < ∞. Its inverse function is denoted arccot x, and we define y = arccot x, −∞ < x < ∞, if and only if x = cot y, 0 < y < π.

graph

1.3. INVERSE TRIGONOMETRIC FUNCTIONS

 

 

 

21

5. y = sec x, 0 ≤ x ≤

π

 

or

π

 

< x ≤ π is one-to-one and covers the range

 

 

 

 

2

2

−∞ < y ≤ −1 or 1 ≤ y < ∞. Its inverse function is denoted arcsec x,

 

y

 

arcsec x,

−∞

< x

1 or 1

x <

, if and only

and we define

 

=

 

 

 

π

 

π

 

≤ −

 

 

if, x = sec y, 0 ≤ y <

 

 

or

 

 

< y ≤ π.

 

 

 

 

 

 

2

2

 

 

 

 

 

graph

6. y = csc x, 2π ≤ x < 0 or 0 < x ≤ π2 , is one-to-one and covers the range −∞ < y ≤ −1 or 1 ≤ y < ∞. Its inverse is denoted arccsc x and

we define y = arccsc x, −∞ < x ≤ −1 or 1 ≤ x < ∞, if and only if, x = csc y, 2π ≤ y < 0 or 0 < y ≤ π2 .

Example 1.3.1 Show that each of the following equations is valid.

(a)arcsin x + arccos x = π2

(b)arctan x + arccot x = π2

(c)arcsec x + arccsc x = π2

To verify equation (a), we let arcsin x = θ.

graph

Then x = sin θ and cos that

π2 − θ = arccos x,

π2 − θ = x, as shown in the triangle. It follows

π2 = θ + arccos x = arcsin x + arccos x.

The equations in parts (b) and (c) are verified in a similar way.

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1. FUNCTIONS

Example 1.3.2 If θ

 

= arcsin x, then compute cos θ, tan θ, cot θ, sec θ and

csc θ.

π

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If θ is −

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, 0, or

 

 

 

 

 

, then computations are easy.

2

2

graph

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Suppose that −

π

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

< x < 0 or 0 < x <

 

. Then, from the triangle, we get

2

 

 

2

cos θ =

 

 

 

 

 

 

 

 

 

 

 

 

 

cot θ =

 

,

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

1 − x2

1

x2,

tan θ =

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 − x2

 

 

x

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

sec θ =

 

 

and csc θ =

 

.

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

1 − x2

 

 

 

 

 

 

 

Example 1.3.3 Make the given substitutions to simplify the given radical

expression and compute all trigonometric functions of θ.

√ √

(a) 4 − x2, x = 2 sin θ (b) x2 − 9, x = 3 sec θ

(c)(4 + x2)3/2, x = 2 tan θ

(a)For part (a), sin θ = x2 and we use the given triangle:

graph

Then

 

 

 

 

 

 

 

 

 

 

 

 

 

cos θ =

4

− x2

,

tan θ =

 

 

 

x

,

cot θ =

4 − x2

,

 

 

 

 

 

 

 

 

 

 

 

2

 

4 − x2

x

 

 

 

 

 

 

 

 

 

 

sec θ =

 

2

,

csc θ =

2

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

4

− x2

 

 

 

 

 

Furthermore, 4 − x2 = 2 cos θ and the radical sign is eliminated.

1.3. INVERSE TRIGONOMETRIC FUNCTIONS

23

(b)For part (b), sec θ = x3 and we use the given triangle:

graph

Then,

 

 

 

 

 

 

 

 

 

 

 

sin θ =

x2

− 4

,

cos θ =

3

, tan θ =

x2 − 4

 

x

x

3

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

x

 

 

 

cot θ =

 

 

,

csc θ =

 

.

 

 

 

x2

− 9

x2 − 9

 

 

 

Furthermore, x2 − 9 = 3 tan θ and the radical sign is eliminated.

(c)For part (c), tan θ = x2 and we use the given triangle:

graph

Then,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

2

 

 

2

 

sin θ =

 

 

,

cos θ =

 

 

,

cot θ =

 

,

 

x

x2

+ 4

x2 + 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

2

+ 4

 

x

2

+ 4

 

 

 

 

 

sec θ =

 

 

,

csc θ =

 

 

.

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

Furthermore, x2 + 4 = 2 sec θ and hence

(4 + x)3/2 = (2 sec θ)3 = 8 sec3 θ.

24

CHAPTER 1. FUNCTIONS

Remark 2 The three substitutions given in Example 15 are very useful in calculus. In general, we use the following substitutions for the given radicals:

√ √

(a) a2 − x2, x = a sin θ (b) x2 − a2, x = a sec θ

(c)a2 + x2, x = a tan θ.

Exercises 1.3

 

 

 

 

 

 

 

 

 

1. Evaluate each of the following:

 

 

 

 

 

 

 

 

 

 

 

 

 

!

 

1

 

 

3

 

(a) 3 arcsin

 

+ 2 arccos

 

 

 

 

 

2

2

 

 

 

1

 

 

 

1

 

 

(b) 4 arctan

 

+ 5arccot

 

 

 

3

3

 

 

 

 

 

2

 

 

 

(c) 2arcsec (−2) + 3 arccos −

 

 

 

3

(d)cos(2 arccos(x))

(e)sin(2 arccos(x))

2.Simplify each of the following expressions by eliminating the radical by using an appropriate trigonometric substitution.

(a)

 

x

(b)

 

 

 

3 + x

(c)

x − 2

 

 

 

 

 

 

 

 

 

 

 

 

9 − x2

 

16 + x2

xx2 − 25

 

 

 

 

(d)

 

1 + x

(e)

 

 

 

2 − 2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 + 2x + 2

x2 − 2x − 3

 

 

 

 

 

 

 

 

(Hint: In parts (d) and (e), complete squares first.)

3.Some famous polynomials are the so-called Chebyshev polynomials, defined by

Tn(x) = cos(n arccos x), −1 ≤ x ≤ 1, n = 0, 1, 2, . . . .

(x) + T|m−n|(x)]

1.3. INVERSE TRIGONOMETRIC FUNCTIONS

25

(a) Prove the recurrence relation for Chebyshev polynomials:

Tn+1(x) = 2xTn(x) − Tn−1(x) for each n ≥ 1.

(b)Show that T0(x) = 1, T1(x) = x and generate T2(x), T3(x), T4(x) and T5(x) using the recurrence relation in part (a).

(c)Determine the zeros of Tn(x) and determine where Tn(x) has its absolute maximum or minimum values, n = 1, 2, 3, 4, ?.

(Hint: Let θ = arccos x, x = cos θ. Then Tn(x) = cos(nθ), Tn+1(x) = cos(nθ + θ), Tn−1(x) = cos(nθ − θ). Use the expansion formulas and then make substitutions in part (a)).

4.Show that for all integers m and n,

1

Tn(x)Tm(x) = 2 [Tm+n

(Hint: use the expansion formulas as in problem 3.) 5. Find the exact value of y in each of the following

 

 

 

 

 

 

 

 

y = arcsin

 

 

 

 

 

1

 

 

 

 

 

 

3

 

a)

y = arccos −2

 

b)

 

 

 

 

2

 

 

 

y = arccot −

 

 

 

 

y = arcsec (−

 

 

 

 

d)

3

e)

2)

3

 

g)

y = arcsec −2

 

 

 

h)

y = arccsc −2

 

 

3

3

 

 

 

 

 

 

 

 

1

 

 

 

 

 

j)

y = arccsc (−2)

 

k)

y = arctan

 

 

 

 

3

 

c) y = arctan(− 3)

f)y = arccsc (− 2)

i)y = arcsec (−2)

l) y = arccot (− 3)

6. Solve the following equations for x in radians (all possible answers).

a)

2 sin4 x = sin2 x

b)

2 cos2 x − cos x − 1 = 0

c)

sin2 x + 2 sin x + 1 = 0

d)

4 sin2 x + 4 sin x + 1 = 0