Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электричество и электрическая ж.д..doc
Скачиваний:
9
Добавлен:
13.08.2019
Размер:
2.07 Mб
Скачать

4. Электрическая емкость

1. Если проводник, удаленный от других тел, зарядить, то потенциал проводника будет пропорционален перенесенному заряду:

. 4.1

Коэффициент пропорциональности между зарядом проводника и его потенциалом характеризует способность проводника накапливать заряд и называется емкостью . Единица электрической емкости фарад . Емкость проводника зависит от размеров его поверхности и диэлектрической проницаемости окружающей среды, но не зависит от рода металла, внутренних пустот.

Например, шар. Потенциал шара определяется формулой . Сопоставляя с формулой 4.1, получим формулу емкости шара .

Емкость проводников зависит от расположения окружающих тел. Если поднести к заряженному проводнику другое тело, то на поверхности тела вследствие явления электростатической индукции возникнут поверхностные заряды. Поле индуцированных зарядов ослабит поле заряженного проводника и его потенциал уменьшится. Значит, емкость увеличится тем больше, чем ближе расположены проводники.

2. Система из двух близко расположенных проводников, заряженных разноименно одинаковым по величине зарядом, называется конденсатором. Проводники конденсатора называются обкладками. Возможно три способа расположения обкладок, при котором внешние электрические заряды не искажают электрическое поле между обкладками, а собственное электрическое поле локализовано в пространстве между обкладками. Это сферический, цилиндрический и плоский конденсаторы.

Электрическая емкость конденсатора определяется как отношение заряда одной из обкладок к разности потенциалов между обкладками:

4.2

3. Плоский конденсатор представляет собой две плоские пластины, расстояние между которыми много меньше размеров пластин (рис. 4.1) . Если одну из обкладок зарядить, например, положительно, а вторую заземлить, то на её внутренней стороне индуцируется отрицательный заряд, а положительный заряд оттолкнется и стечет на заземление. Процесс зарядки происходит до тех пор, пока разноименные заряды пластин не станут одинаковыми по величине, это соответствует минимуму электрической энергии.. При этом электрическое поле будет сосредоточено практически между пластинами, где заряды расположены наиболее близко. Снаружи пластин длина силовых линий большая, п оле слабое и на него могут влиять внешние поля, но этим можно пренебречь.

Определим емкость плоского конденсатора. Пусть на пластинах заряд +q и – q. Напряженность электростатического поля двух разноименно заряженных пластин равна , где поверхностная плотность заряда на пластинах, равная отношению заряда одной из пластин к площади поверхности пластины. Напряжение между пластинами для однородного поля равно . Подставив в определяющую формулу емкости конденсатора 4.2, получим

. 4.3

Емкость конденсатора пропорциональна относительной диэлектрической проницаемости диэлектрика между обкладками, так как поле связанных зарядов ослабляет поле свободных зарядов на обкладках . При том же заряде на обкладках разность потенциалов уменьшается. Для увеличения емкости конденсаторов вместо обычной слюды, парафинированной бумаги применяют сегнетоэлектрики, диэлектрическая проницаемость которых в сотни и более раз выше, но зависит от напряжения. Применяются так называемые электролитические конденсаторы, в которых диэлектриком служит тончайший слой окислов алюминия. Их емкость сравнительно велика, но включать их можно только в цепь постоянного тока в соответствии с полярностью. Иначе слой окислов разрушается и происходит пробой.

4. Конденсаторы соединяют в батарею параллельно или последовательно. Для увеличения емкости и накапливаемого заряда применяют параллельное соединение (рис. 4.2), при котором замкнуты одноименно заряженные обкладки. Заряд батареи равен сумме зарядов обкладок , а падение напряжения на всех конденсаторах одинаково. Поделим сумму зарядов на напряжение батареи . По определению, отношение заряда конденсатора к напряжению есть емкость

. 4.4

Последовательное соединение конденсаторов применяют для повышения предельного напряжения, чтобы избежать электрического пробоя диэлектрика конденсатора (рис. 4.3). При последовательном соединении заряды конденсаторов одинаковы, потому что при зарядке батареи обкладки двух соседних конденсаторов, замкнутые проводником, в сумме имеют нулевой заряд. Общее напряжение батареи равно сумме напряжений на отдельных конденсаторах: . Поделим сумму напряжений на величину заряда батареи . Эти отношения равны обратной величине емкости:

. 4.5

П ри последовательном соединении емкость батареи меньше емкости конденсатора с самой малой емкостью.

5. Заряженный конденсатор обладает энергией. В этом можно убедиться, разрядив конденсатор на проводник. При этом возникает искра и даже электрическая дуга, выделяется теплота в подводящих проводниках.

Энергию конденсатор получает от источника в процессе зарядки. Будем производить зарядку конденсатора, забирая, например, положительные заряды на отрицательной обкладке и перенося их на положительную обкладку. Работа по переносу зарядов против сил возникающего электростатического поля идет на приращение потенциальной энергии конденсатора . Суммируя порции энергии с учетом, что , получим после взятия интеграла три формулы энергии

. 4.5

Определим объёмную плотность энергии. Для однородного поля плоского конденсатора разделим величину энергии на объем поля , в результате по средней из формул 4.5, получим формулы объемной плотности энергии электрического поля

. 4.6

Электрическая энергия сосредоточена не на зарядах, она распределена в пространстве, где имеется электрическое поле. Но в электростатике невозможно провести эксперименты для определения источника энергии. Только рассматривая переменные поля, например, электромагнитные волны, которые обладают энергией, но существуют без электрических зарядов, можно убедиться, что энергия распределена в поле.

6. Конденсаторы широко применяются в радиотехнике, электротехнике. На тяговых подстанциях электрической железной дороги они используются в электрических фильтрах для сглаживания пульсаций, выпрямленного блоком выпрямителей, тока. Это обусловлено тем, что для переменной составляющей тока конденсаторы представляют малое сопротивление и замыкают переменный ток, но не пропускают постоянную составляющую тока.

Конденсаторы используются при точечной электросварке. Накопив энергию в процессе зарядки от источника тока, в момент замыкания на электроды они отдают энергию на процесс нагревания металла в месте сварки.

Конденсаторы, подключенные к катушке индуктивности, составляют цепь, называемую колебательный контур. Это важнейший элемент радиоприемников и генераторов электрических колебаний. В индукционных плавильных печах конденсаторы вместе с индуктором представляют колебательный контур. При резонансе в контуре текут токи во много раз превышающий ток, потребляемый от питающего генератора.

Контрольные вопросы

1. Проведем контур, пересекающий плоский конденсатор и замкнутый снаружи. Кажется, что интеграл циркуляции напряженности равен только внутри конденсатора. Но для электростатического поля циркуляция напряженности должна быть равной нулю. Парадокс?

2. При зарядке конденсатора источник совершает работу qU , а энергия заряженного конденсатора в два раза меньше . Куда пропала половина работы источника тока?

3. Как изменится емкость конде6нсатора, если между его обкладками поместить металлическую пластину? Где следует расположить пластину?

4. Как изменится емкость конденсатора, если между его обкладками поместить диэлектрическую пластину?

5. Каким способом изменяют емкость плоского конденсатора переменной емкости? Если трения нет, то легко ли изменять емкость?

6. Плоский конденсатор заряжен и отключен от источника тока. Как изменится напряжение и энергия конденсатора, если пластины конденсатора развести?

7. Плоский конденсатор подключен к источнику тока. Как изменится напряжение, заряд и энергия конденсатора, если пластины конденсатора развести? Какие превращения происходят с энергией тел системы?

8. Заряженные одноименно капельки ртути сливаются в одну большую каплю. За счет какой энергии происходит слияние, ведь капельки отталкиваются?

9. Когда больше выделится теплоты в соединительных проводах при соединении заряженных конденсаторов одноименными или разноименными полюсами?

10. В генераторе Маркса одинаковые конденсаторы сначала были включены параллельно и заряжены. После отключения источника тока конденсаторы соединили последовательно. Как изменится напряжение на выводах батареи и энергия батареи, емкость батареи?

11. Пластины заряженного плоского конденсатора притягиваются друг к другу. Как сделать весы из конденсатора?

12. В заряженном плоском конденсаторе, отключенном то источника тока, находится диэлектрическая пластинка. Если попытаться вынуть пластинку, то она сопротивляется, или нет? Как изменяется энергия конденсатора при вытаскивании пластинки?

13. В заряженном плоском конденсаторе, подключенном к источнику тока, находится диэлектрическая пластинка. Как течет электрический ток при вытаскивании пластинки? Как изменяется энергия конденсатора и источника тока при вытаскивании пластинки?

14. Почему при зарядке батареи конденсаторов, соединенных последовательно, заряды обкладок всех конденсаторов одинаковы?

15. На одну обкладку конденсатора заряженным шариком переносят положительные заряды. Вторая обкладка заземлена. Почему заряд второй обкладки отрицательный и точно такой же величины?

16. Как определить электрическую емкость шара, находящегося около металлической заземленной плоскости, применяя метод зеркальных изображений?

17. Два одинаковых конденсаторов, соединены последовательно. В одном из них диэлектрик обладает небольшой проводимостью. Будут ли одинаковы падения напряжения на конденсаторах, если подключить источник тока? Который конденсатор будет пробит, если пробивное напряжение чуть больше половины ЭДС источника?

18. Два конденсатора соединены параллельно. В одном из них диэлектрик обладает небольшой проводимостью. Какое будет напряжение на каждом конденсаторе при подключении источника тока?

19. Пластины плоского конденсатора замкнуты на гальванометр. В конденсатор быстро вдвигают пластину диэлектрика и вынимают. Будет ли течь электрический ток через гальванометр?

20. К обкладке воздушного плоского конденсатора прижали диэлектрическую пластину, толщина которой два раза меньше расстояния между обкладками. Можно ли представить этот двухслойный конденсатор как два последовательно соединенных конденсатора? Определите емкость.

21. Емкость одного метра длины коаксиального кабеля 2∙10-10 Ф. Чему равна емкость кабеля длиной 5 м?

22. Обкладки заряженного конденсатора по очереди соединяют проводником с землей. Как изменится напряжение и энергия конденсатора?

23. Полый металлический шар с небольшим отверстием заряжен. Когда можно пробным шариком на ручке снять заряд с шара: касаясь внутренней поверхности или наружной?