Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
pervye_voprosy (3).docx
Скачиваний:
11
Добавлен:
03.08.2019
Размер:
340.84 Кб
Скачать

8. Законы сохранения количества движения (импульса), энергии и момента количества движения,их примение в технике и технологиях. Принцип реактивного движения.

Симметрия - в широком смысле — инвариантность (неизменность) стр-ры, свойств, формы материального объекта относительно его преобразований (т. е. изменений ряда физических условий). Симметрия лежит в основе законов сохранения. Весьма важным для понимания законов природы является принцип инвариантности относительно сдвигов в пр-ве и во времени, т. е. параллельных переносов начала координат и начала отсчета времени. Он формулируется так: смещение во времени и в пр-ве не влияет на протекание физических процессов.

Однородность пр-ва заключается в том, что при параллельном переносе в пр-ве замкнутой сис-мы тел как целого, её физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной сис-мы отсчета.

Из свойства симметрии пр-ва — его однородности следует закон сохранения импульса, импульс замкнутой сис-мы сохраняется, т. е. не изменяется с течением времени. Закон сохранения импульса справедлив не только в классической физ, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц, подчиняющихся законам квантовой механики. Импульс сохраняется для незамкнутой сис-мы, если геометрическая сумма всех внешних сила равна нулю. Закон сохранения импульса носит универсальный характер и является фундаментальным законом природы.

Однородность времени означает инвариантность физических законов относительно выбора начала отсчета времени. Из однородности времени следует закон сохранения механиче­ской энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем. Консервативные силы действуют только в потенциальных полях, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; например сила трения. Механические сис-мы, на тела кот действуют только консервативные силы (внутренние и внешние), называются консервативными сис-мами. Закон сохранения механической энергии можно сформулировать еще и так: в консервативных сис-мах полная механическая энергия сохраняется. В диссипативных сис-мах механическая энергия постепенно уменьшается из-за преобразования ее в другие (немеханические) формы энергии. Этот процесс называется диссипацией, или рассеянием энергии. Строго говоря, все реальные сис-мы в природе диссипативные. Закон сохранения и превращения энергии — фундаментальный закон природы; он справедлив как для систем макроскопических тел, так и для микросистем.

В системе, в кот действуют консервативные и диссипативные силы, например силы трения, полная механическая энергия сис-мы не сохраняется. Следовательно, для такой сис-мы закон сохранения механической энергии не выполняется. Однако при убывании механической энергии всегда возникает эквивалентное количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом заключается физическая сущность закона сохранения и превращения энергии — сущность неуничтожения материи и ее движения, поскольку энергия, по определению, — универсальная мера различных форм движения и взаимодействия.

M=m0/sqrt(1-(v^2/c^2))

Обратимся еще к одному свойству симметрии пр-ва — его изотропности. Изотропность пр-ва означает инва­риантность физических законов относительно выбора направле­ний осей координат сис-мы отсчета (относительно поворота замкнутой сис-мы в пр-ве на любой угол). Из изотропности пр-ва следует фундаментальный за­кон природы — закон сохранения момента импульса: момент импульса замкнутой сис-мы сохраняется, т. е. не изменяется с те­чением времени.

Физика в технике и технологиях

Микро- и наномеханика, Микроэлектроника, Устройства хранения информации, Применения сверхпроводников, Применения фуллеренов и нанотрубок.

ПРИНЦИП РЕАКТИВНОГО ДВИЖЕНИЯ. принцип реактивного движения был осознан Циолковским в самом начале его самостоятельной научной деятельности.

Принцип реактивного движения ныне широко применяется для полетов. Мысль о возможности такого применения реактивного движения была впервые высказана в 1881 г. казненным царским правительством известным революционером Кибальчичем.

Принцип реактивного движения позволил создать самолеты, движущиеся со скоростью в несколько тысяч километров в час, летающие снаряды, поднимающиеся на высоту в сотни километров над Землей, искусственные спутники Земли и космические ракеты, совершающие межпланетные путешествия.

Если внутри прочного замкнутого сосуда с отверстием ( например, ракеты) сгорает топливо, то образовавшиеся сжатые газы с большой скоростью вырываются через отверстие наружу, а корпус ( оболочка) ракеты движется в противоположную сторону

Закон сохранения импульса замкнутой системы позволяет легко объяснить принцип реактивного движения. При сгорании топлива повышается температура и создается высокое давление, благодаря чему продукты сгорания с большой скоростью вырываются из сопла двигателя ракеты. В отсутствие внешних полей полный импульс ракеты и вылетающих из сопла газов остается неизменным. Поэтому при истечении газов ракета приобретает скорость в противоположном направлении.

Ракетами называют такие летательные аппараты, которые используют принцип реактивного движения и несут с собой на борту горючее и окислитель. В качестве горючего употребляют различные вещества: нефтяные фракции, спирты, аммиак, гидразин, ксилидин, жидкий водород и др. Окислителями служат жидкий кислород, пероксид водорода, азотная кислота и оксиды азота, тетранитрометан, фтор и его соединения и др. Присутствие в ракете и горючего и окислителя позволяет осуществлять полет как у поверхности земли, так и на больших высотах в разреженном воздухе, в безвоздушном пространстве и даже под водой. Принцип реактивного движения используют не только в межпланетных и космических кораблях, в межконтинентальных ракетах, но и в обычных самолетах современной авиации. При этом на борту самолета размещают одно горючее, а окислителем служит кислород воздуха. Такие двигатели, рассчитанные на применение кислорода воздуха, получили название воздушно-реактивных; они не могут работать в безвоздушном пространстве. Подавляющее большинство современных самолетов оборудованы воздушно-реактивными двигателями

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]