Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
pervye_voprosy (3).docx
Скачиваний:
11
Добавлен:
03.08.2019
Размер:
340.84 Кб
Скачать

17. Гравитационное взаимодействие тел. Закон всемирного тяготения Ньютона. Космические скорости.

В современной физике имеются весьма серьёзные проблемы в отношении гравитационного взаимодействия тел. Прежде всего, до сих пор не создано общепризнанной физической теории тяготения, т.е. теории, объясняющей природу механизма тяготения. Ни законы Ньютона, ни Общая теория относительности Эйнштейна не раскрывают механизма тяготения, а другие теории официальной наукой не рассматриваются. Исаак Ньютон открыл Закон всемирного тяготения, выраженный им в следующей математической формуле: F=G*(m1*m2)/R2. Здесь в числителе произведение m1 и m2 масс взаимно действующих тел, а в знаменателе – квадрат расстояния между ними, G – коэффициент в этой формуле, так называемая гравитационная постоянная (постоянная тяготения). Закон Ньютона не был теоретическим в современном смысле этого слова: он являлся математическим описанием опытного факта.

В дальнейшем представления о тяготении были несколько развиты. Были введены представления о напряженности поля тяготения и его потенциале:

напряженность грав. поля = отношению силы тяготения, действующей на материальную точку, в величине её массы и представляет собой векторную величину :g= F/m= G*M/R2

Потенциал поля тяготения – величина скалярная, суммируемая алгебраически в каждой точке пространства от всех масс. Анализ следствий из этого положения привел в 19в. к представлениям о так называемом гравитационном парадоксе. Остановлюсь на нем чуть подробнее.

В конце XIX в. немецкий астроном Х.Зелигер обратил внимание и на другой парадокс, неизбежно вытекающий из представления о бесконечности Вселенной. Нетрудно подсчитать, если опираться на Закон всемирного тяготения Ньютона, что в бесконечной Вселенной с равномерно распределенными в ней небесными телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной. Результат зависит от способа вычислений, причем в этом случае относительные скорости небесных тел могли бы быть бесконечно большими. Так как ничего похожего в космосе не наблюдается, Х.Зелигер сделал вывод, что, количество небесных тел ограничено, а значит. Вселенная не бесконечна. В конечном счете, причина парадокса – в идеализации Закона Ньютона, а поскольку закон на самом деле не является всемирным, то и гравитационного парадокса в природе не существует.

Несмотря на победы, на Законе всемирного тяготения лежала мрачная тень с самого момента рождения. Этой тенью было вытекающее из закона мгновенное дальнодействие. Сила тяготения мгновенно, с бесконечной скоростью передавалась на любые расстояния, при этом совершенно неясно, как она преодолевает пространство. Сила передается телу воздействием на него другого тела – это положение было аксиомой для Галилея, на него опираются законы механики самого Ньютона, а вот Закон всемирного тяготения выкидывает прочь эту аксиому.

Для тяготения Ньютон отказался искать причину в действиях эфира, хотя делал это в отношении многих других явлений. «Причину же этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю».

Сомнения, навеянные гравитационным парадоксом, были развеяны, как представляют современные ученые, с появлением Общей теории относительности. Она была создана А.Эйнштейном в 1916г. на основе специальной ТО, созданной на 11 лет раньше.

Если СТО рассматривала особенности изменения параметров и взаимодействия тел, движущихся с околосветовыми скоростями, то ОТО распространила положения специальной теории на явления гравитации. При этом в основу всех рассуждений ОТО изначально положен инвариант (неизменный при любых преобразованиях параметр) – четырехмерный интервал, определяемый соотношением:

ds2 = dx2 + dy2 + dz2 – (cdt)2 =const, где с – скорость света.

ТО продекларировала, что скорость распространения любого взаимодействия не может быть больше скорости света. Пространство при наличии гравитационного потенциала становится не евклидовым, а искривленным, и степень этой кривизны определяется потенциалом тяготения. Тела в таком пространстве движется по криволинейным траекториям, даже свет испытывает отклонение. Тяготение таким образом объясняется наличием массы в пространстве, которое искривляется и заставляет другие массы притягиваться к телу, исказившему пространство.

Однако никакого физического механизма не предлагается, поиски физ. причин замещены рассуждениями об относительности движения и о «кривизне пространства», которое вызывают гравитационные массы. Возникает вопрос: относительно чего искривляется пространство; и использование скорости света непонятно, т.к. электромагнитная величина не может быть использована в теории тяготения. Тяготение явл. другим фундаментальным взаимодействием, не электромагнитным. К тому же утверждения Эйнштейна о том, что скорость распространения гравитации равна скорости света, опровергается опытом.

Т.о., исследования о разработке физической теории тяготения должны быть возобновлены на основе представлений об эфире – мировой среде.

Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении с поверхности небесного тела сможет:

Первая космическая скорость (круговая скорость) — скорость, которую необходимо придать объекту, который после этого не будет использовать реактивное движение, чтобы вывести его на круговую орбиту (пренебрегая сопротивлением атмосферы и вращением планеты). Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

В инерциальной системе отсчёта на объект, движущийся по круговой орбите вокруг Земли будет действовать только одна сила — сила тяготения Земли. При этом движение объекта не будет ни равномерным, ни равноускоренным. Происходит это потому, что скорость и ускорение (величины не скалярные, а векторные) в данном случае не удовлетворяют условиям равномерности/равноускоренности движения — то есть движения с постоянной (по величине и направлению) скоростью/ускорением. Действительно — вектор скорости будет постоянно направлен по касательной к поверхности Земли, а вектор ускорения — перпендикулярно ему к центру Земли, при этом по мере движения по орбите эти векторы постоянно будут менять свое направление. Поэтому в инерциальной системе отсчета такое движение часто называют «движение по круговой орбите с постоянной по модулю скоростью»

Часто для удобства вычисления первой космической скорости переходят к рассмотрению этого движения в неинерциальной системе отсчета — относительно Земли. В этом случае объект на орбите будет находиться в состоянии покоя, так как на него будут действовать уже две силы: центробежная сила и сила тяготения. Соответственно, для вычисления первой космической скорости необходимо рассмотреть равенство этих сил.

где m — масса объекта, M — масса планеты, G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2),  — первая космическая скорость, R — радиус планеты. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 371 км), найдем

 7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения — так как g = GM/R², то

.

Космические скорости могут быть вычислены и для поверхности других космических тел. Например на Луне v1 = 1,680 км/с, v2 = 2,375 км/с

Вторая космическая скорость (параболическая скорость, скорость освобождения, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала по сравнению с массой небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела. Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с.

Параболической вторая космическая скорость называется потому, что тела, имеющие при старте скорость, в точности равную второй космической, движутся по дуге параболы относительно небесного тела. Однако, если энергии телу придано чуть больше, его траектория перестает быть параболой и становится гиперболой; если чуть меньше, то она превращается в эллипс. В общем случае все они являются коническими сечениями.

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё избесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния.

Запишем закон сохранения энергии

где слева стоят кинетическая и потенциальная энергии на поверхности планеты (потенциальная энергия отрицательна, так как точка отсчета взята на бесконечности), справа то же, но на бесконечности (покоящееся тело на границе гравитационного влияния — энергия равна нулю). Здесь m — масса пробного тела, M — масса планеты, R — радиус планеты, G —гравитационная постоянная, v2 — вторая космическая скорость.

Решая это уравнение относительно v2, получим

Между первой и второй космическими скоростями существует простое соотношение:

Квадрат скорости убегания равен удвоенному ньютоновскому потенциалу в данной точке (например, на поверхности планеты):

Тре́тья косми́ческая ско́рость (гиперболическая) — минимально необходимая скорость находящегося у поверхности Земли тела без двигателя, позволяющая преодолеть притяжение Солнца и уйти за пределы Солнечной системы в межзвёздное пространство[1].

Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты, космический аппарат может достичь третьей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с. Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует). При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца.

Траектория такого аппарата будет частью дуги параболы (скорость убывает к нулю асимптотически).

Первым земным космическим аппаратом, достигшим третьей космической скорости, стал американский Пионер-10.

Четвёртая космическая скорость — минимально необходимая скорость тела, позволяющая преодолеть притяжение галактики в данной точке. Численно равна квадратному корню из гравитационного потенциала в данной точке галактики (если выбрать гравитационный потенциал равным нулю на бесконечности).

Четвёртая космическая скорость не постоянна для всех точек галактики, а зависит от координаты. По оценкам, в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра Галактики, но и от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса. Вне диска Галактики распределение масс приблизительно сферически симметрично, как следует из измерений скоростей шаровых скоплений и других объектов сферической подсистемы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]