Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
pervye_voprosy (3).docx
Скачиваний:
11
Добавлен:
03.08.2019
Размер:
340.84 Кб
Скачать

12. Взаимосвязь атомно-молекулярного строения и химических свойств веществ. Периодическая таблица элементов д.И.Менделеева. Трансурановые элементы и их применение в технике и технологиях.

Попытки систематизации химических элементов по их химическим свойствам делались многими учеными, начиная с 30-х годов XIX в. Д. И. Менделеев в 1869 г. разработал таблицу, в основу кот. положены атомные веса эл-тов, т. е. число протонов в ядрах атомов. Выяснилось, что химические св-ва эл-тов периодически зависят от этого числа. В 1911 г. Резерфордом была разработана планетарная модель атома. На ее основе голландский ученый ван ден Брук показал, а Г. Мозли экспериментально доказал, что св-ва элементов зависят не от числа нуклонов, а от числа протонов, т. е. от атомного номера, а не от атомного веса.

В основе теории лежит представление о закономерностях построения элкетронных оболочек (уровней) и подоболочек (подуровней) в атомах по мере роста числа протонов в ядре атома Z и, след-но, числа электронов в оболочках атома. Сходство электронных конфигураций свободных атомов коррелирует с подобием их химического поведения.

Химическая связь - это взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Валентность атомов показывает число связей, образуемых данным атомом с соседними атомами в молекуле. Основными видами химических связей явл-ся ковалентная и ионная.

В ковалентной связи электроны атомов образуют общую орбиталь. В ионных связях электрон передается от одного атома к другому, и образуются противоположно заряженные атомы.

Химические реакции - превращения одних веществ в другие, отличные от исходных по химическому составу или строению.

Реакционная способность - это характеристика хим.

Горизонтальные строчки Периодической таблицы называются ПЕРИОДАМИ, а вертикальные - ГРУППАМИ.

В группах собраны элементы с похожими химическими свойствами, а в периодах химические свойства постепенно изменяются.

Если сравнить между собой элементы разных периодов, то можно отметить важную особенность: Номер ПЕРИОДА, в котором находится элемент, совпадает с номером его валентной оболочки. Эта валентная оболочка постепенно заполняется от начала к концу периода.

В этом заключается физический и химический смысл номера периода. Как же изменяются свойства элементов одного периода.

В левой части периодов элементы проявляют ярко выраженные восстановительные свойства. Большинство из этих элементов являются металлами (Li, Na, Mg, Ca).

В правой части собраны типичные неметаллы, обладающие окислительными свойствами (O, F, Cl).

В середине периодов располагаются элементы, обладающие как восстановительными, так и окислительными свойствами. Эти окислительные или восстановительные свойства зависят от того, с каким элементом они реагируют.

Каждый период Периодической таблицы начинается активным металлом и заканчивается инертным газом.

О том, какой электронный признак объединяет элементы в группы, мы уже знаем: элементы во всех группах имеют одинаковое электронное строение внешних электронных оболочек.

Номер группы совпадает с числом валентных электронов, которые могут участвовать в образовании химических связей.

Поэтому номер группы часто совпадает с валентностью элементов. Например, номер группы совпадает с валентностью s-элементов и с наибольшей возможной валентностью p-элементов. В этом заключается физический смысл номера группы.

Следует рассказать о несколько особом положении водорода в Периодической таблице. Водород имеет электронную конфигурацию 1s1. Этому элементу в Периодической таблице в равной степени подходит место и в 1-й группе (где щелочные металлы могут легко отдавать свой единственный s-электрон), так и в 7-й группе (где элементам достаточно принять 1 электрон для завершения внешней оболочки). Поэтому водород формально можно поместить в любую из этих групп. Оба варианта будут правильными.

Заряд ядра Z совпадает с ПОРЯДКОВЫМ НОМЕРОМ элемента в Периодической таблице.

Многие из вас наверняка заметили, что среди порядковых номеров элементов в Периодической таблице нет перерывов. Это означает, что все грядущие открытия новых элементов возможны только для элементов с порядковым номером больше 109, а все клеточки Периодической таблицы с порядковыми номерами от 1 до 109 уже заполнены и здесь не следует ожидать открытий каких-нибудь новых элементов. До появления Периодической таблицы это вполне ясное нам с вами обстоятельство совсем не было очевидным, и поиски многих новых элементов велись химиками практически вслепую.

Совпадение говорит прежде всего о том, что перед нами не просто один из способов систематизации элементов (таких было немало в истории химии), а фундаментальный закон природы, записанный Д. И. Менделеевым в виде Периодической таблицы.

Трансурановые элементы, химические элементы, расположенные в периодической системе элементов Д. И. Менделеева за ураном, то есть с атомным номером Z ³ 93. Известно 14 Трансурановые элементы Из-за относительно высокой скорости их радиоактивного распада Трансурановые элементы в заметных количествах не сохранились в земной коре. Возраст Земли около 5×109 лет, а период полураспада T1/2 наиболее долгоживущих изотопов Трансурановые элементы меньше 107 лет. За время существования Земли Трансурановые элементы, возникшие в процессе нуклеосинтеза, либо полностью распались, либо их количество резко уменьшилось (до 1012 раз). В природных минералах найдены микроколичества 244Pu - наиболее долгоживущего Трансурановые элементы (T1/2 ~ 8×106 лет), который, возможно, сохранился на Земле с момента её формирования. В урановых рудах обнаружены следы 237Np (T1/2 ~ 2,14×106 лет) и 239Pu (T1/2 ~ 2,4×104 лет), которые образуются в результате ядерных реакций с участием ядер U.

Для синтеза далёких Трансурановые элементы используется два типа ядерных реакций - слияния и деления. В первом случае ядра мишени и ускоренного иона полностью сливаются, а избыточная энергия образовавшегося возбуждённого составного ядра снимается путём «испарения» нейтронов. При использовании ионов С, О, Ne и мишеней из Pu, Cm, Cf образуется сильно возбуждённое составное ядро (энергия возбуждения ~ 40-60 Мэв). Каждый испаряемый нейтрон способен унести из ядра энергию в среднем порядка 10-12 Мэв, поэтому для «остывания» составного ядра должно вылететь до 5 нейтронов. С испарением нейтронов конкурирует процесс деления возбуждённого ядра. Для элементов с Z = 104-105 вероятность испарения одного нейтрона в 500-100 раз меньше вероятности деления. Это объясняет малый выход новых элементов: доля ядер, которые «выживают» в результате снятия возбуждения, составляет всего 10-8-10-10 от полного числа ядер мишени, слившихся с частицами. В этом кроется причина того, что за последние 20 лет синтезировано всего 5 новых элементов (Z = 102-106).

Трансурановые элементы испытывают все виды радиоактивного распада. Однако электронный захват и b-распад - процессы относительно медленные, и их роль становится небольшой при распаде ядер с Z > 100, имеющих короткие времена жизни относительно a-распада и спонтанного деления. По мере утяжеления элемента конкуренция между спонтанным делением и (b-распадом становится всё более заметной. Нестабильность относительно спонтанного деления, очевидно, определяет границу периодической системы элементов. Если период полураспада для спонтанного деления 92U ~ 1016 лет, для 94Pu ~ 1010 лет, то для 100Fm он измеряется часами, для 104-го элемента - секундами (см. Курчатовий), для 106-го элемента - несколькими мсек.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]